MockObject.py 20.6 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
import galsim
import numpy as np
import astropy.constants as cons
Fang Yuedong's avatar
Fang Yuedong committed
4
from astropy import wcs
Fang Yuedong's avatar
Fang Yuedong committed
5
from astropy.table import Table
6

Zhang Xin's avatar
Zhang Xin committed
7
from ObservationSim.MockObject._util import magToFlux, VC_A, convolveGaussXorders, convolveImg
8
9
from ObservationSim.MockObject._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, \
    getABMAG
10
from ObservationSim.MockObject.SpecDisperser import SpecDisperser
Fang Yuedong's avatar
Fang Yuedong committed
11

12

Fang Yuedong's avatar
Fang Yuedong committed
13
class MockObject(object):
14
    def __init__(self, param, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
15
        self.param = param
Fang Yuedong's avatar
Fang Yuedong committed
16
17
18
        for key in self.param:
            setattr(self, key, self.param[key])
        
Fang Yuedong's avatar
Fang Yuedong committed
19
20
21
22
23
24
        if self.param["star"] == 0:
            self.type = "galaxy"
        elif self.param["star"] == 1:
            self.type = "star"
        elif self.param["star"] == 2:
            self.type = "quasar"
Fang Yuedong's avatar
Fang Yuedong committed
25
26
27
28
        ###mock_stamp_START
        elif self.param["star"] == 3:
            self.type = "stamp"
        ###mock_stamp_END
29
        self.sed = None
30
        self.fd_shear = None
31
        # Place holder for outputs
32
        self.additional_output_str = ""
33
34
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
35
36
37
    def getMagFilter(self, filt):
        if filt.filter_type in ["GI", "GV", "GU"]:
            return self.param["mag_use_normal"]
Fang Yuedong's avatar
Fang Yuedong committed
38
        return self.param["mag_%s" % filt.filter_type.lower()]
39

40
    def getFluxFilter(self, filt):
Fang Yuedong's avatar
Fang Yuedong committed
41
        return self.param["flux_%s" % filt.filter_type.lower()]
Fang Yuedong's avatar
Fang Yuedong committed
42
43

    def getNumPhotons(self, flux, tel, exptime=150.):
44
        pupil_area = tel.pupil_area * (100.) ** 2  # m^2 to cm^2
Fang Yuedong's avatar
Fang Yuedong committed
45
46
47
        return flux * pupil_area * exptime

    def getElectronFluxFilt(self, filt, tel, exptime=150.):
48
49
50
51
52
53
        # photonEnergy = filt.getPhotonE()
        # flux = magToFlux(self.getMagFilter(filt))
        # factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
        # return factor * filt.efficiency * tel.pupil_area * exptime
        flux = self.getFluxFilter(filt)
        return flux * tel.pupil_area * exptime
Fang Yuedong's avatar
Fang Yuedong committed
54
55
56
57

    def getPosWorld(self):
        ra = self.param["ra"]
        dec = self.param["dec"]
58
        return galsim.CelestialCoord(ra=ra * galsim.degrees, dec=dec * galsim.degrees)
Fang Yuedong's avatar
Fang Yuedong committed
59

60
    def getPosImg_Offset_WCS(self, img, fdmodel=None, chip=None, verbose=True, chip_wcs=None, img_header=None):
Fang Yuedong's avatar
Fang Yuedong committed
61
62
        self.posImg = img.wcs.toImage(self.getPosWorld())
        self.localWCS = img.wcs.local(self.posImg)
63
        # Apply field distortion model
Fang Yuedong's avatar
Fang Yuedong committed
64
65
66
67
        if (fdmodel is not None) and (chip is not None):
            if verbose:
                print("\n")
                print("Before field distortion:\n")
68
                print("x = %.2f, y = %.2f\n" % (self.posImg.x, self.posImg.y), flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
69
            self.posImg, self.fd_shear = fdmodel.get_distorted(chip=chip, pos_img=self.posImg)
Fang Yuedong's avatar
Fang Yuedong committed
70
71
            if verbose:
                print("After field distortion:\n")
72
                print("x = %.2f, y = %.2f\n" % (self.posImg.x, self.posImg.y), flush=True)
73
        
Fang Yuedong's avatar
Fang Yuedong committed
74
75
76
77
78
79
        x, y = self.posImg.x + 0.5, self.posImg.y + 0.5
        self.x_nominal = int(np.floor(x + 0.5))
        self.y_nominal = int(np.floor(y + 0.5))
        dx = x - self.x_nominal
        dy = y - self.y_nominal
        self.offset = galsim.PositionD(dx, dy)
80
        
81
        # Deal with chip rotation
82
        if chip_wcs is not None:
83
            self.chip_wcs = chip_wcs
84
        elif img_header is not None:
85
            self.chip_wcs = galsim.FitsWCS(header=img_header)
xin's avatar
xin committed
86
        else:
87
            self.chip_wcs = None
xin's avatar
xin committed
88

89
        return self.posImg, self.offset, self.localWCS, self.chip_wcs, self.fd_shear
xin's avatar
xin committed
90

91
    def getRealPos(self, img, global_x=0., global_y=0., img_real_wcs=None):
xin's avatar
xin committed
92
93
94
95
96
        img_global_pos = galsim.PositionD(global_x, global_y)
        cel_pos = img.wcs.toWorld(img_global_pos)
        realPos = img_real_wcs.toImage(cel_pos)
        return realPos

97
    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
Fang Yuedong's avatar
Fang Yuedong committed
98
                          exptime=150., fd_shear=None):
Fang Yuedong's avatar
Fang Yuedong committed
99
100
101
102
103
104
105
106
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
107
108
            if self.logger:
                self.logger.error(e)
Fang Yuedong's avatar
Fang Yuedong committed
109
            return 2, None
Fang Yuedong's avatar
Fang Yuedong committed
110

111
        # Set Galsim Parameters
Fang Yuedong's avatar
Fang Yuedong committed
112
113
114
115
116
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)
117
118
        
        # Get real image position of object (deal with chip rotation w.r.t its center)
119
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
120
                                        img_real_wcs=self.chip_wcs)
xin's avatar
xin committed
121
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
xin's avatar
xin committed
122
123
124
125
126
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
127
128
129
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0
xin's avatar
xin committed
130

131
        # Loop over all sub-bandpasses
Fang Yuedong's avatar
Fang Yuedong committed
132
133
134
135
136
137
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
138
139
                if self.logger:
                    self.logger.error(e)
Fang Yuedong's avatar
Fang Yuedong committed
140
                continue
141
            ratio = sub / full
Fang Yuedong's avatar
Fang Yuedong committed
142
143
144
145
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue
146
147

            # nphotons_sum += nphotons
Fang Yuedong's avatar
Fang Yuedong committed
148
            # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
149
150
            
            # Get PSF model
151
152
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
153
154
155
156
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(nphotons)
            # star = galsim.Convolve(psf, star)
            star = psf.withFlux(nphotons)
Fang Yuedong's avatar
Fang Yuedong committed
157

158
159
160
161
162
163
164
165
166
167
168
            stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
            if np.sum(np.isnan(stamp.array)) > 0:
                continue
            stamp.setCenter(x_nominal, y_nominal)
            bounds = stamp.bounds & galsim.BoundsI(0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() > 0:
                chip.img.setOrigin(0, 0)
                chip.img[bounds] += stamp[bounds]
                is_updated = 1
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                del stamp
Fang Yuedong's avatar
Fang Yuedong committed
169
        
170
171
        if is_updated == 0:
            # Return code 0: object has missed this detector
Fang Yuedong's avatar
Fang Yuedong committed
172
            print("obj %s missed"%(self.id))
173
174
            if self.logger:
                self.logger.info("obj %s missed"%(self.id))
Fang Yuedong's avatar
Fang Yuedong committed
175
176
            return 0, pos_shear
        return 1, pos_shear # Return code 1: draw sucesss
Fang Yuedong's avatar
Fang Yuedong committed
177

178
    def addSLStoChipImage(self, sdp=None, chip=None, xOrderSigPlus=None, local_wcs=None):
Xin Zhang's avatar
Xin Zhang committed
179
180
181
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
Fang Yuedong's avatar
Fang Yuedong committed
182
183
184
185
186
187
188
189
190
            #########################################################
            # DEBUG
            #########################################################
            # print("before convolveGaussXorders, img_s:", img_s)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                # img_s[nan_ids] = 0
                print("DEBUG: before convolveGaussXorders specImg nan num is", img_s[nan_ids].shape[0])
            #########################################################
Xin Zhang's avatar
Xin Zhang committed
191
192
193
            img_s, orig_off = convolveGaussXorders(img_s, xOrderSigPlus[k])
            origin_order_x = v[1] - orig_off
            origin_order_y = v[2] - orig_off
Fang Yuedong's avatar
Fang Yuedong committed
194
195
196
197
198
199
200
201
202
203

            #########################################################
            # DEBUG
            #########################################################
            # print("DEBUG: orig_off is", orig_off)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                img_s[nan_ids] = 0
                print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
            #########################################################
Xin Zhang's avatar
Xin Zhang committed
204
205
206
207
208
209
210
211
            specImg = galsim.ImageF(img_s)
            photons = galsim.PhotonArray.makeFromImage(specImg)
            photons.x += origin_order_x
            photons.y += origin_order_y

            xlen_imf = int(specImg.xmax - specImg.xmin + 1)
            ylen_imf = int(specImg.ymax - specImg.ymin + 1)
            stamp = galsim.ImageF(xlen_imf, ylen_imf)
xin's avatar
xin committed
212
            stamp.wcs = local_wcs
Xin Zhang's avatar
Xin Zhang committed
213
214
            stamp.setOrigin(origin_order_x, origin_order_y)

215
            bounds = stamp.bounds & galsim.BoundsI(0, chip.npix_x - 1, 0, chip.npix_y - 1)
Xin Zhang's avatar
Xin Zhang committed
216
217
            if bounds.area() == 0:
                continue
xin's avatar
xin committed
218
            chip.img.setOrigin(0, 0)
Xin Zhang's avatar
Xin Zhang committed
219
220
221
            stamp[bounds] = chip.img[bounds]
            chip.sensor.accumulate(photons, stamp)
            chip.img[bounds] = stamp[bounds]
xin's avatar
xin committed
222
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
Xin Zhang's avatar
Xin Zhang committed
223
224
225
            del stamp
        del spec_orders

Zhang Xin's avatar
Zhang Xin committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def addSLStoChipImageWithPSF(self, sdp=None, chip=None, pos_img_local = [1,1], psf_model=None, bandNo = 1, grating_split_pos=3685, local_wcs=None, pos_img=None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            # print(bandNo,k)
            try:
                psf, pos_shear = psf_model.get_PSF(chip, pos_img_local = pos_img_local, bandNo = bandNo, galsimGSObject=True, g_order = k, grating_split_pos=grating_split_pos)
            except:
                psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)

            psf_img = psf.drawImage(nx=100, ny=100, wcs = local_wcs)

            psf_img_m = psf_img.array

            #########################################################
            # DEBUG
            #########################################################
            # ids_p = psf_img_m < 0
            # psf_img_m[ids_p] = 0

            # from astropy.io import fits
            # fits.writeto(str(bandNo) + '_' + str(k) + '_psf.fits', psf_img_m)

            # print("DEBUG: orig_off is", orig_off)
            nan_ids = np.isnan(img_s)
            if img_s[nan_ids].shape[0] > 0:
                img_s[nan_ids] = 0
                print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
            #########################################################
            img_s, orig_off = convolveImg(img_s, psf_img_m)
            origin_order_x = v[1] - orig_off[0]
            origin_order_y = v[2] - orig_off[1]


            specImg = galsim.ImageF(img_s)
            # photons = galsim.PhotonArray.makeFromImage(specImg)
            # photons.x += origin_order_x
            # photons.y += origin_order_y

            # xlen_imf = int(specImg.xmax - specImg.xmin + 1)
            # ylen_imf = int(specImg.ymax - specImg.ymin + 1)
            # stamp = galsim.ImageF(xlen_imf, ylen_imf)
            # stamp.wcs = local_wcs
            # stamp.setOrigin(origin_order_x, origin_order_y)

            specImg.wcs = local_wcs
            specImg.setOrigin(origin_order_x, origin_order_y)

            bounds = specImg.bounds & galsim.BoundsI(0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() == 0:
                continue
            chip.img.setOrigin(0, 0)
            chip.img[bounds] = chip.img[bounds] + specImg[bounds]
            # stamp[bounds] = chip.img[bounds]
            # # chip.sensor.accumulate(photons, stamp)
            # chip.img[bounds] = stamp[bounds]
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            # del stamp
        del spec_orders
        return pos_shear

Fang Yuedong's avatar
Fang Yuedong committed
287
    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
Fang Yuedong's avatar
Fang Yuedong committed
288
289
290
291
292
293
294
295
296
297
298
                         exptime=150., normFilter=None, grating_split_pos=3685, fd_shear=None):
        if normFilter is not None:
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            if sedNormFactor == 0:
                return 2, None
        else:
            sedNormFactor = 1.
Fang Yuedong's avatar
Fang Yuedong committed
299
300
301
302
303
304
305
306
307
308

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

309
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
310
                                        img_real_wcs=self.chip_wcs)
xin's avatar
xin committed
311
312
313
314
315
316
317
318

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

319
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
xin's avatar
xin committed
320

321
        flat_cube = chip.flat_cube
Zhang Xin's avatar
Zhang Xin committed
322

323
324
        xOrderSigPlus = {'A': 1.3909419820029296, 'B': 1.4760376591236062, 'C': 4.035447379743442,
                         'D': 5.5684364343742825, 'E': 16.260021029735388}
xin's avatar
xin committed
325
        grating_split_pos_chip = 0 + grating_split_pos
Zhang Xin's avatar
Zhang Xin committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339

        branges = np.zeros([len(bandpass_list),2])

        if hasattr(psf_model,'bandranges'):
            if psf_model.bandranges is None:
                return 2, None
            if len(psf_model.bandranges) != len(bandpass_list):
                return 2, None
            branges = psf_model.bandranges
        else:
            for i in range(len(bandpass_list)):
                branges[i, 0] = bandpass_list[i].blue_limit * 10
                branges[i, 1] = bandpass_list[i].red_limit * 10

Fang Yuedong's avatar
Fang Yuedong committed
340
        for i in range(len(bandpass_list)):
Zhang Xin's avatar
Zhang Xin committed
341
342
343
344
345
            # bandpass = bandpass_list[i]
            brange = branges[i]

            # psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
            #                                    folding_threshold=folding_threshold)
Fang Yuedong's avatar
Fang Yuedong committed
346
347
            star = galsim.DeltaFunction(gsparams=gsp)
            star = star.withFlux(tel.pupil_area * exptime)
Zhang Xin's avatar
Zhang Xin committed
348
349
            psf_tmp = galsim.Gaussian(sigma=0.002)
            star = galsim.Convolve(psf_tmp, star)
Fang Yuedong's avatar
Fang Yuedong committed
350
            
Zhang Xin's avatar
Zhang Xin committed
351
            starImg = star.drawImage(nx=60, ny=60, wcs=chip_wcs_local, offset=offset)
Fang Yuedong's avatar
Fang Yuedong committed
352

xin's avatar
xin committed
353
354
            origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
                           x_nominal - (starImg.center.x - starImg.xmin)]
Fang Yuedong's avatar
Fang Yuedong committed
355
            starImg.setOrigin(0,0)
Xin Zhang's avatar
Xin Zhang committed
356
357
358
359
360
361
362
363
364
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] - 1, origin_star[1] + starImg.array.shape[1] - 1]
            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
                subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
                ## part img disperse

                subImg_p1 = starImg.array[:, 0:subSlitPos]
                star_p1 = galsim.Image(subImg_p1)
                origin_p1 = origin_star
Fang Yuedong's avatar
Fang Yuedong committed
365
                star_p1.setOrigin(0,0)
366
367
                xcenter_p1 = min(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p1 = y_nominal - 0
Xin Zhang's avatar
Xin Zhang committed
368
369

                sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1,
370
371
                                       ycenter=ycenter_p1, origin=origin_p1,
                                       tar_spec=normalSED,
Zhang Xin's avatar
Zhang Xin committed
372
                                       band_start=brange[0], band_end=brange[1],
373
374
375
                                       conf=chip.sls_conf[0],
                                       isAlongY=0,
                                       flat_cube=flat_cube)
Xin Zhang's avatar
Xin Zhang committed
376

Zhang Xin's avatar
Zhang Xin committed
377
378
379
380
                # self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear=self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local = [xcenter_p1,ycenter_p1],
                                              psf_model=psf_model, bandNo = i+1, grating_split_pos=grating_split_pos,
                                              local_wcs=chip_wcs_local, pos_img = pos_img)
Xin Zhang's avatar
Xin Zhang committed
381

382
                subImg_p2 = starImg.array[:, subSlitPos + 1:starImg.array.shape[1]]
Xin Zhang's avatar
Xin Zhang committed
383
                star_p2 = galsim.Image(subImg_p2)
Fang Yuedong's avatar
Fang Yuedong committed
384
                star_p2.setOrigin(0, 0)
Xin Zhang's avatar
Xin Zhang committed
385
                origin_p2 = [origin_star[0], grating_split_pos_chip]
xin's avatar
xin committed
386
387
                xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p2 = y_nominal - 0
Xin Zhang's avatar
Xin Zhang committed
388
389
390
391

                sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2,
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
Zhang Xin's avatar
Zhang Xin committed
392
                                       band_start=brange[0], band_end=brange[1],
Xin Zhang's avatar
Xin Zhang committed
393
                                       conf=chip.sls_conf[1],
394
395
                                       isAlongY=0,
                                       flat_cube=flat_cube)
Xin Zhang's avatar
Xin Zhang committed
396

Zhang Xin's avatar
Zhang Xin committed
397
398
399
400
                # self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear=self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
                                              psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                              local_wcs=chip_wcs_local, pos_img = pos_img)
Xin Zhang's avatar
Xin Zhang committed
401
402
403

                del sdp_p1
                del sdp_p2
404
            elif grating_split_pos_chip <= gal_origin[1]:
xin's avatar
xin committed
405
406
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
Xin Zhang's avatar
Xin Zhang committed
407
                                    tar_spec=normalSED,
Zhang Xin's avatar
Zhang Xin committed
408
                                    band_start=brange[0], band_end=brange[1],
Xin Zhang's avatar
Xin Zhang committed
409
                                    conf=chip.sls_conf[1],
410
411
                                    isAlongY=0,
                                    flat_cube=flat_cube)
Zhang Xin's avatar
Zhang Xin committed
412
413
414
415
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear=self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                              psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                              local_wcs=chip_wcs_local, pos_img = pos_img)
Xin Zhang's avatar
Xin Zhang committed
416
                del sdp
417
            elif grating_split_pos_chip >= gal_end[1]:
xin's avatar
xin committed
418
419
                sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0,
                                    ycenter=y_nominal - 0, origin=origin_star,
Xin Zhang's avatar
Xin Zhang committed
420
                                    tar_spec=normalSED,
Zhang Xin's avatar
Zhang Xin committed
421
                                    band_start=brange[0], band_end=brange[1],
Xin Zhang's avatar
Xin Zhang committed
422
                                    conf=chip.sls_conf[0],
423
424
                                    isAlongY=0,
                                    flat_cube=flat_cube)
Zhang Xin's avatar
Zhang Xin committed
425
426
427
428
                # self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
                pos_shear=self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                                              psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                                              local_wcs=chip_wcs_local, pos_img = pos_img)
Xin Zhang's avatar
Xin Zhang committed
429
                del sdp
Zhang Xin's avatar
Zhang Xin committed
430
            # del psf
Fang Yuedong's avatar
Fang Yuedong committed
431
        return 1, pos_shear
Fang Yuedong's avatar
Fang Yuedong committed
432
433
434
435
436
437
438
439
440
441

    def SNRestimate(self, img_obj, flux, noise_level=0.0, seed=31415):
        img_flux = img_obj.added_flux
        stamp = img_obj.copy() * 0.0
        rng = galsim.BaseDeviate(seed)
        gaussianNoise = galsim.GaussianNoise(rng, sigma=noise_level)
        stamp.addNoise(gaussianNoise)
        sig_obj = np.std(stamp.array)
        snr_obj = img_flux / sig_obj
        return snr_obj