PSFInterp.py 9.83 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
PSF interpolation for CSST-Sim

NOTE: [iccd, iwave, ipsf] are counted from 1 to n, but [tccd, twave, tpsf] are counted from 0 to n-1
'''

import galsim
import numpy as np

import os
import time
import copy
import PSF.PSFInterp.PSFConfig as myConfig
import PSF.PSFInterp.PSFUtil as myUtil
from PSF.PSFModel import PSFModel

LOG_DEBUG = False  #***#
NPSF      = 900    #***# 30*30
iccdTest  = 1      #***#


class PSFInterp(PSFModel):
    # def __init__(self, PSF_data=None, params=None, PSF_data_file=None):
    def __init__(self, chip, PSF_data=None, PSF_data_file=None, sigSpin=0, psfRa=0.15):
        """
        The PSF data matrix is either given by a object parameter or read in from a file.
        Parameters:
            PSF_data: The PSF data matrix object
            params: Other parameters?
            PSF_data_file: The file for PSF data matrix (optional).
        """
        if LOG_DEBUG:
            print('===================================================')
            print('DEBUG: psf module for csstSim ' \
                  +time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
            print('===================================================')

        self.sigSpin = sigSpin
        self.sigGauss = psfRa

        self.iccd = int(chip.getChipLabel(chipID=chip.chipID))
        if PSF_data_file == None:
            PSF_data_file = '/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_20210108/CSST_psf_ciomp_2p5um_cycle3_ccr90'
        self.nwave= self._getPSFwave(self.iccd, PSF_data_file)
        self.PSF_data = self._loadPSF(self.iccd, PSF_data_file)

        if LOG_DEBUG:
            print('nwave-{:} on ccd-{:}::'.format(self.nwave, self.iccd), flush=True)
            print('self.PSF_data ... ok', flush=True)
            print('Preparing self.[psfMat,cen_col,cen_row] for psfMaker ... ', end='', flush=True)

        ngy, ngx    = self.PSF_data[0][0]['psfMat'].shape
        self.psfMat = np.zeros([self.nwave, NPSF, ngy, ngx], dtype=np.float32)
        self.cen_col= np.zeros([self.nwave, NPSF], dtype=np.float32)
        self.cen_row= np.zeros([self.nwave, NPSF], dtype=np.float32)
        self.hoc    =[]
        self.hoclist=[]
        for twave in range(self.nwave):
            for tpsf in range(NPSF):
                self.psfMat[twave, tpsf, :, :] = self.PSF_data[twave][tpsf]['psfMat']
                self.PSF_data[twave][tpsf]['psfMat'] = 0 ###free psfMat

                self.pixsize = self.PSF_data[twave][tpsf]['pixsize']*1e-3 ##mm
                self.cen_col[twave, tpsf] = self.PSF_data[twave][tpsf]['image_x'] +0.*self.pixsize + self.PSF_data[twave][tpsf]['centroid_x']
                self.cen_row[twave, tpsf] = self.PSF_data[twave][tpsf]['image_y'] +0.*self.pixsize + self.PSF_data[twave][tpsf]['centroid_y']

            #hoclist on twave for neighborsFinding
            hoc,hoclist = myUtil.findNeighbors_hoclist(self.cen_col[twave], self.cen_row[twave])
            self.hoc.append(hoc)
            self.hoclist.append(hoclist)

        if LOG_DEBUG:
            print('ok', flush=True)


    def _getPSFwave(self, iccd, PSF_data_file):
        """
        Get # of sampling waves on iccd
        Parameters:
            iccd: The chip of i-th ccd
            PSF_data_file: The file for PSF data matrix
        Returns:
            nwave: The number of the sampling waves
        """
        strs = os.listdir(PSF_data_file + '/ccd{:}'.format(iccd))
        nwave = 0
        for _ in strs:
            if 'wave_' in _:
                nwave += 1
        return nwave



    def _loadPSF(self, iccd, PSF_data_file):
        """
        load psf-matrix on iccd
        Parameters:
            iccd: The chip of i-th ccd
            PSF_data_file: The file for PSF data matrix
        Returns:
            psfSet: The matrix of the csst-psf
        """
        psfSet = []
        for ii in range(self.nwave):
            iwave = ii+1
            if LOG_DEBUG:
                print('self._loadPSF: iwave::', iwave, flush=True)
            psfWave = []
            for jj in range(NPSF):
                ipsf = jj+1
                psfInfo = myConfig.LoadPSF(iccd, iwave, ipsf, PSF_data_file, InputMaxPixelPos=True, PSFCentroidWgt=True, PSFBinning=True, PSFConvGauss=True)
                psfWave.append(psfInfo)
            psfSet.append(psfWave)
        if LOG_DEBUG:
            print('psfSet has been loaded:', flush=True)
            print('psfSet[iwave][ipsf][keys]:', psfSet[0][0].keys(), flush=True)
        return psfSet


    
    def _preprocessPSF(self):
        pass


    def _findWave(self, bandpass):
        for twave in range(self.nwave):
            bandwave = self.PSF_data[twave][0]['wavelength']
            if bandpass.blue_limit < bandwave and bandwave < bandpass.red_limit:
                return twave
        return -1
 


    def get_PSF(self, chip, pos_img, bandpass, pixSize=0.0184, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3):
        """
        Get the PSF at a given image position

        Parameters:
            chip: A 'Chip' object representing the chip we want to extract PSF from.
            pos_img: A 'galsim.Position' object representing the image position.
            bandpass: A 'galsim.Bandpass' object representing the wavelength range.
            pixSize: The pixels size of psf matrix
            findNeighMode: 'treeFind' or 'hoclistFind'
        Returns:
            PSF: A 'galsim.GSObject'.
        """

        pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600  #set psf pixsize

        #***#  assert self.iccd == chip.chipID, 'ERROR: self.iccd != chip.chipID'
        # twave = bandpass-1  #***# ??? #self.findWave(bandpass)  ###twave=iwave-1 as that in NOTE
        assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
        twave = self._findWave(bandpass)
        if twave == -1:
            print("!!!PSF bandpass does not match.")
            exit()
        PSFMat = self.psfMat[twave]
        cen_col= self.cen_col[twave]
        cen_row= self.cen_row[twave]

        # px = pos_img[0]
        # py = pos_img[1]
        px = (pos_img.x - chip.cen_pix_x)*0.01
        py = (pos_img.y - chip.cen_pix_y)*0.01
        if findNeighMode == 'treeFind':
            imPSF = myConfig.psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, PSFCentroidWgt=True)
        if findNeighMode == 'hoclistFind':
            imPSF = myConfig.psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)

        if galsimGSObject:
            img = galsim.ImageF(imPSF, scale=pixSize)
            gsp = galsim.GSParams(folding_threshold=folding_threshold)
            self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
174
175
            # gaussPSF = galsim.Gaussian(sigma=0.04, gsparams=gsp)
            # self.psf    = galsim.Convolve(gaussPSF, self.psf)
Fang Yuedong's avatar
Fang Yuedong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
            return self.PSFspin(x=px/0.01, y=py/0.01)
        return imPSF

    def PSFspin(self, x, y):
        """
        The PSF profile at a given image position relative to the axis center

        Parameters:
        theta : spin angles in a given exposure in unit of [arcsecond]
        dx, dy: relative position to the axis center in unit of [pixels]

        Return:
        Spinned PSF: g1, g2 and axis ratio 'a/b'
        """
        a2Rad = np.pi/(60.0*60.0*180.0)
        
        ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
        rc = np.sqrt(x*x + y*y)
        cpix = rc*(self.sigSpin*a2Rad)

        beta = (np.arctan2(y,x) + np.pi/2)
        ell = cpix**2/(2.0*ff**2+cpix**2)
        qr = np.sqrt((1.0+ell)/(1.0-ell))
        PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
        return self.psf.shear(PSFshear), PSFshear




if __name__ == '__main__':
    if True:
        psfPath = '/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_20210108/CSST_psf_ciomp_2p5um_cycle3_ccr90'
        psfCSST = PSFInterp(PSF_data_file = psfPath)
        iwave= 1
        ipsf = 665
        pos_img = [psfCSST.cen_col[iwave, ipsf], psfCSST.cen_row[iwave, ipsf]]
        img = psfCSST.get_PSF(1, pos_img, iwave, galsimGSObject=True)
        print('haha')

    
    if False:
        #old version (discarded)
        #plot check-1
        import matplotlib.pyplot as plt
        fig = plt.figure(figsize=(18,5))
        ax = plt.subplot(1,3,1)
        plt.imshow(img)
        plt.colorbar()
        ax = plt.subplot(1,3,2)
        imgx = psfCSST.itpPSF_data[iwave][ipsf]['psfMat']
        imgx/= np.sum(imgx)
        plt.imshow(imgx)
        plt.colorbar()
        ax = plt.subplot(1,3,3)
        plt.imshow(img - imgx)
        plt.colorbar()
        plt.savefig('test/figs/test1.jpg')

    if False:
        #old version (discarded)
        #plot check-2: 注意图像坐标和全局坐标
        fig = plt.figure(figsize=(8,8), dpi = 200)
        img = psfCSST.PSF_data[iwave][ipsf]['psfMat']
        npix = img.shape[0]
        dng  = 105
        imgg = img[dng:-dng, dng:-dng]
        plt.imshow(imgg)
        imgX = psfCSST.PSF_data[iwave][ipsf]['image_x']  #in mm
        imgY = psfCSST.PSF_data[iwave][ipsf]['image_y']  #in mm
        deltX= psfCSST.PSF_data[iwave][ipsf]['centroid_x'] #in mm
        deltY= psfCSST.PSF_data[iwave][ipsf]['centroid_y'] #in mm
        maxX = psfCSST.PSF_data[iwave][ipsf]['max_x']
        maxY = psfCSST.PSF_data[iwave][ipsf]['max_y']
        cenPix_X = npix/2 + deltX/0.005
        cenPix_Y = npix/2 - deltY/0.005
        maxPix_X = npix/2 + maxX/0.005-1
        maxPix_Y = npix/2 - maxY/0.005-1
        plt.plot([cenPix_X-dng],[cenPix_Y-dng], 'rx', ms = 20)
        plt.plot([maxPix_X-dng],[maxPix_Y-dng], 'b+', ms=20)

        from scipy import ndimage
        y, x = ndimage.center_of_mass(img)
        plt.plot([x-dng],[y-dng], 'rx', ms = 10, mew=4)
        x, y = myUtil.findMaxPix(img)
        plt.plot([x-dng],[y-dng], 'b+', ms = 10, mew=4)
        plt.savefig('test/figs/test2.jpg')