Star.py 5.15 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
import galsim
import os, sys
import numpy as np
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate

8
9
10
from ObservationSim.MockObject._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG, tag_sed
from ObservationSim.MockObject.MockObject import MockObject

Fang Yuedong's avatar
Fang Yuedong committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class Star(MockObject):
    def __init__(self, param):
        super().__init__(param)

    def unload_SED(self):
        """(Test) free up SED memory
        """
        del self.sed

    def load_SED(self, survey_type, normFilter=None, target_filt=None, sed_lib=None, sed_path=None):
        if survey_type == "photometric":
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            # spec_lambda = Table.read(sed_path, path=f"/SED/wave_{self.model_tag}")
            # spec_flux = Table.read(sed_path, path=f"/SED/{self.sed_type}")
            # wave, flux = spec_lambda['col0'].data, spec_flux['col0'].data
            _, wave, flux = tag_sed(
                h5file=sed_lib, 
                model_tag=self.param['model_tag'], 
                teff=self.param['teff'],
                logg=self.param['logg'],
                feh=self.param['feh'])
            flux_photon = flux * (wave / (cons.h.value * cons.c.value)) * 1e-13
            sed_photon = Table(np.array([wave, flux_photon]).T, names=('WAVELENGTH', 'FLUX'))
            # Get scaling factor for SED
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'],
                spectrum=sed_photon,
                norm_thr=normFilter,
                sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
                eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            sed_photon = np.array([sed_photon['WAVELENGTH'], sed_photon['FLUX']*sedNormFactor]).T
            # Convert to galsim.SED object
            spec = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
            self.sed = galsim.SED(spec, wave_type='A', flux_type='1', fast=False)
            # Get magnitude
            interFlux = integrate_sed_bandpass(sed=self.sed, bandpass=target_filt.bandpass_full)
            self.param['mag_%s'%target_filt.filter_type] = getABMAG(
                interFlux=interFlux, 
                bandpass=target_filt.bandpass_full)
            # print('mag_use_normal = ', self.param['mag_use_normal'])
            # print('mag_%s = '%target_filt.filter_type, self.param['mag_%s'%target_filt.filter_type])

        elif survey_type == "spectroscopic":
            # self.sedPhotons(sed_path=sed_path)
            self.sedPhotons(sed_lib=sed_lib)

    def sedPhotons(self, sed_path=None, sed_lib=None):
        # spec_lambda = Table.read(sed_path, path=f"/SED/wave_{self.model_tag}")
        # spec_flux = Table.read(sed_path, path=f"/SED/{self.sed_type}")
        _, w_orig, f_orig = tag_sed(
                h5file=sed_lib, 
                model_tag=self.param['model_tag'], 
                teff=self.param['teff'],
                logg=self.param['logg'],
                feh=self.param['feh'])
        # spec_data = {}
        # f_orig = spec_flux["col0"].data
        # w_orig = spec_lambda["col0"].data
        speci = interpolate.interp1d(w_orig, f_orig)
        lamb = np.arange(2500, 10001 + 0.5, 0.5)
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
        self.sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))

    def getGSObj(self, psf, g1=0, g2=0, flux=None, filt=None, tel=None, exptime=150.):
        if flux == None:
            flux = self.getElectronFluxFilt(filt, tel, exptime)
        # star = galsim.Gaussian(sigma=1.e-8, flux=1.)
        star = galsim.DeltaFunction()
        star = star.withFlux(flux)
        final = galsim.Convolve(psf, star)
        return final
        
    def getGSObj_multiband(self, tel, psf_list, bandpass_list, filt, nphotons_tot=None, g1=0, g2=0, exptime=150.):
        if len(psf_list) != len(bandpass_list):
            raise ValueError("!!!The number of PSF profiles and the number of bandpasses must be equal.")
        objs = []
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)

        try:
            full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            return -1

        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                return -1
        
            ratio = sub/full

            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                return -1
            star = galsim.DeltaFunction()
            star = star.withFlux(nphotons)
            star = galsim.Convolve(psf, star)
            objs.append(star)
        final = galsim.Sum(objs)
        return final