psfConfigTest.py 33.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
CSST image simulation module (in python3): Point Spread Function (PSF)
author:: Wei Chengliang <chengliangwei@pmo.ac.cn>
"""

import sys
from itertools import islice

import numpy as np
import matplotlib.pyplot as plt

import scipy.io
from scipy.io import loadmat
#import xlrd

from scipy import ndimage
from scipy.interpolate import RectBivariateSpline

#from astropy.modeling.models import Ellipse2D
#from astropy.coordinates import Angle
#import matplotlib.patches as mpatches

import ctypes
import galsim



def setupPSFimg(iccd, iwave, psfPath="/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_ciomp"):
    """
    psf model setup for csst-sim
   
    Parameters:
        iccd, iwave (int, int): psf model on iccd & iwave
        psfPath (string, optional): path to psf matrix

    Returns:
        psf_model (psf_class): psf model
  
    Methods:
        psf_model.PSFinplace(self, px, py, interpScheme=1): psf interpolation
        psf_model.PSFspin(self, psf, sigSpin, sigGauss, dx, dy): psf rotation (from Yudong)
    """
    psf_model = PSFimg(iccd, iwave, psfPath)
    return psf_model


##################################################
#       A. psf matrix loading & checking         #
##################################################
def psfPixelLayout(nrows, ncols, cenPosRow, cenPosCol, pixSizeInMicrons=5.0):
    """
    convert psf pixels to physical position
    
    Parameters:
        nrows, ncols (int, int): psf sampling with [nrows, ncols].
        cenPosRow, cenPosCol (float, float): A physical position of the chief ray for a given psf.
        pixSizeInMicrons (float-optional): The pixel size in microns from the psf sampling.
        
    Returns:
        psfPixelPos (numpy.array-float): [posx, posy] in mm for [irow, icol]
 
    Notes:
        1. show positions on ccd, but not position on image only [+/- dy]
    """
    psfPixelPos = np.zeros([2, nrows, ncols])
    if nrows % 2 != 0:
        sys.exit()
    if ncols % 2 != 0:
        sys.exit()
        
    cenPix_row = nrows/2 + 1 #中心主光线对应pixle [由长光定义]
    cenPix_col = ncols/2 + 1

    for irow in range(nrows):
        for icol in range(ncols):
            delta_row = ((irow + 1) - cenPix_row)*pixSizeInMicrons*1e-3
            delta_col = ((icol + 1) - cenPix_col)*pixSizeInMicrons*1e-3
            psfPixelPos[0, irow, icol] = cenPosCol + delta_col
            psfPixelPos[1, irow, icol] = cenPosRow - delta_row  #note-1
            
    return psfPixelPos


def imSigRange(img, fraction=0.80):
    """
    extract the image within x-percent (DISCARD)
    
    Parameters:
        img (numpy.array-float): image
        fraction (float-optional): a percentage

    Returns:
        im1 (numpy.array-float): image
    """
    im1 = img.copy()
    im1size = im1.shape
    im2 = np.sort(im1.reshape(im1size[0]*im1size[1]))
    im2 = im2[::-1]
    im3 = np.cumsum(im2)/np.sum(im2)
    loc = np.where(im3 > fraction)
    #print(im3[loc[0][0]], im2[loc[0][0]])
    im1[np.where(im1 <= im2[loc[0][0]])]=0

    return im1


def imPlotInRange(img):
    """
    plot image within a selected range
    
    Parameters:
        img (numpy.array-float): image

    Returns:
    """
    im1 = img.copy()
    im1size = im1.shape
    X,Y = np.meshgrid(range(im1size[1]),range(im1size[0]))
    Z = im1

    resolution = 25

    f = lambda x,y: Z[int(y),int(x) ]
    g = np.vectorize(f)

    x = np.linspace(0,Z.shape[1], Z.shape[1]*resolution)
    y = np.linspace(0,Z.shape[0], Z.shape[0]*resolution)
    X2, Y2= np.meshgrid(x[:-1],y[:-1])
    Z2 = g(X2,Y2)

    #plt.pcolormesh(X,Y, Z)
    #plt.imshow(img, origin='lower')
    plt.contour(X2-0.5,Y2-0.5,Z2, [0.], colors='w', linestyles='--',  linewidths=[1])

    return 


def findMaxPix(img):
    """
    get the pixel position of the maximum-value
    
    Parameters:
        img (numpy.array-float): image
    
    Returns:
        imgMaxPix_x, imgMaxPix_y (int, int): pixel position in columns & rows
    """
    maxIndx = np.argmax(img)
    maxIndx = np.unravel_index(maxIndx, np.array(img).shape)
    imgMaxPix_x = maxIndx[1]
    imgMaxPix_y = maxIndx[0]

    return imgMaxPix_x, imgMaxPix_y


def psfTailor(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28):
    """
    psf tailor within a given aperture size
 
    Parameters:
        img (numpy.array-float): image
        apSizeInArcsec (float-optional): aperture size in arcseconds.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
    Returns:
        imgT (numpy.array-float): image
    """
    imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
    apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
    apSizeInPix = np.int(np.ceil(apSizeInPix))
    imgT = np.zeros_like(img)
    imgT[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1, 
         imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1] = \
    img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1, 
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]    
    return imgT


def psfEncircle(img, fraction=0.8, psfSampleSizeInMicrons=5, focalLengthInMeters=28):
    """
    psf tailor within a given percentage.
 
    Parameters:
        img (numpy.array-float): image
        fraction (float-optional): a percentage for psf tailor.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
    Returns:
        img*wgt (numpy.array-float): image
        REE80 (float): radius of REE80 in arcseconds.
    """
    imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    im1 = img.copy()
    im1size = im1.shape
    
    dis = np.zeros_like(img)
    for irow in range(im1size[0]):
        for icol in range(im1size[1]):
            dx = icol - imgMaxPix_x
            dy = irow - imgMaxPix_y
            dis[irow, icol] = np.hypot(dx, dy)
            
    nn = im1size[1]*im1size[0]
    disX = dis.reshape(nn)
    disXsortId = np.argsort(disX)

    imgX = img.reshape(nn)
    imgY = imgX[disXsortId]
    psfFrac = np.cumsum(imgY)/np.sum(imgY)
    ind = np.where(psfFrac > fraction)[0][0]
    
    wgt = np.ones_like(dis)
    wgt[np.where(dis > dis[np.where(img == imgY[ind])])] = 0
    
    REE80 = np.rad2deg(dis[np.where(img == imgY[ind])]*psfSampleSizeInMicrons*1e-6/focalLengthInMeters)*3600
    return img*wgt, REE80


def psfSecondMoments(psfMat, cenX, cenY, pixSize=1):
    """
    estimate the psf ellipticity by the second moment of surface brightness

    Parameters:
        psfMat (numpy.array-float): image
        cenX, cenY (float, float): pixel position of the psf center
        pixSize (float-optional): pixel size
 
    Returns:
        sz (float): psf size
        e1, e2 (float, float): psf ellipticity
    """
    I = psfMat
    ncol = I.shape[1]
    nrow = I.shape[0] 
    w   = 0.0
    w11 = 0.0
    w12 = 0.0
    w22 = 0.0
    for icol in range(ncol):
        for jrow in range(nrow):
            x = icol*pixSize - cenX
            y = jrow*pixSize - cenY
            w   += I[jrow, icol]
            w11 += x*x*I[jrow, icol]
            w12 += x*y*I[jrow, icol]
            w22 += y*y*I[jrow, icol]
    w11 /= w
    w12 /= w
    w22 /= w
    sz = w11 + w22
    e1 = (w11 - w22)/sz
    e2 = 2.0*w12/sz
    
    return sz, e1, e2


def LoadPSF(iccd, iwave, ipsf, psfPath, psfSampleSize=5, CalcPSFsize=True, CalcPSFcenter=True, SigRange=False, TailorScheme=1, InputMaxPixelPos=False):
    '''加载psf信息'''
    """
    load psf informations from psf matrix.
    
    Parameters:
        iccd (int): ccd number [1,30].
        iwave(int): wave-index [1,4].
        ipsf (int): psf number [1, 100].
        psfPath (int): path to psf matrix
        psfSampleSize (float-optional): psf size in microns.
        CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: True
        CalcPSFcenter (bool-optional): whether calculate psf center. Default: True 
        SigRange (bool-optional): whether use psf tailor. Default: False
        TailorScheme (int-optional): which method for psf tailor. Default: 1
    Returns:
        psfInfo (dirctionary)
    """
    if iccd not in np.linspace(1, 30, 30, dtype='int'):
        print('Error - iccd should be in [1, 30].')
        sys.exit()
    if iwave not in np.linspace(1, 4, 4, dtype='int'): 
        print('Error - iwave should be in [1, 4].')
        sys.exit()
    if ipsf not in np.linspace(1, 900, 900, dtype='int'):
        print('Error - ipsf should be in [1, 900].')
        sys.exit()
        
    psfInfo = {}
    fpath = psfPath +'/' +'ccd{:}'.format(iccd) +'/' + 'wave_{:}'.format(iwave)
    
    #获取ipsf矩阵
    fpathMat = fpath +'/' +'5_psf_array' +'/' +'psf_{:}.mat'.format(ipsf)
    data = scipy.io.loadmat(fpathMat)
    psfInfo['psfMat'] = data['psf']
    
    #获取ipsf波长
    fpathWave = fpath +'/' +'1_wavelength.txt'
    f = open(fpathWave, 'r')
    wavelength = np.float(f.readline())
    f.close()
    psfInfo['wavelength'] = wavelength
    
    #获取ipsf位置
    fpathCoordinate = fpath +'/' +'4_PSF_coordinate.txt'
    f = open(fpathCoordinate, 'r')
    header = f.readline()
    for line in islice(f, ipsf-1, ipsf):  
        line = line.strip()
        columns = line.split()
    f.close()
    icol = 0
    psfInfo['field_x'] = float(columns[icol])    #deg, 视场采样位置
    icol+= 1
    psfInfo['field_y'] = float(columns[icol])    #deg
    icol+= 1
    psfInfo['centroid_x'] = float(columns[icol]) #mm, psf质心相对主光线的偏移量
    icol+= 1
    psfInfo['centroid_y'] = float(columns[icol]) #mm
    icol+= 1
    if InputMaxPixelPos == True:
        psfInfo['max_x'] = float(columns[icol])      #mm, max pixel
        icol+= 1
        psfInfo['max_y'] = float(columns[icol])      #mm
        icol+= 1
    psfInfo['image_x'] = float(columns[icol])    #mm, 主光线位置
    icol+= 1
    psfInfo['image_y'] = float(columns[icol])    #mm

    #nrows = 180  #psf采样大小, in pixels
    #ncols = 180
    nrows, ncols = psfInfo['psfMat'].shape
    psfPos   = psfPixelLayout(nrows, ncols, psfInfo['image_y'], psfInfo['image_x'], pixSizeInMicrons=5.0)
    imgMaxPix_x, imgMaxPix_y = findMaxPix(psfInfo['psfMat'])
    psfInfo['imgMaxPosx_ccd'] = psfPos[0, imgMaxPix_y, imgMaxPix_x] #cx, psf最大值位置, in mm
    psfInfo['imgMaxPosy_ccd'] = psfPos[1, imgMaxPix_y, imgMaxPix_x] #cy

    #计算psf size & ellipticity
    if CalcPSFsize is True:
        psfMat = psfInfo['psfMat'].copy()
        cenX, cenY, sz, e1, e2, REE80 = psfSizeCalculator(psfMat, psfSampleSize=psfSampleSize, CalcPSFcenter=CalcPSFcenter, SigRange=SigRange, TailorScheme=TailorScheme)
        
        psfInfo['psfCenX_img'] = cenX  #in local pixels, psf质心位置, in pixels
        psfInfo['psfCenY_img'] = cenY  #in local pixels
        psfInfo['psfSize'] = sz
        psfInfo['psf_e1'] = e1
        psfInfo['psf_e2'] = e2
        psfInfo['REE80'] = REE80
    
    return psfInfo


def psfSizeCalculator(psfMat, psfSampleSize=5, CalcPSFcenter=True, SigRange=False, TailorScheme=1):
    """
    calculate psf size & ellipticity
    
    Parameters:
        psfMat (numpy.array): image
        psfSampleSize (float-optional): psf size in microns.
        CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
        SigRange (bool-optional): whether use psf tailor. Default: False
        TailorScheme (int-optional): which method for psf tailor. Default: 1
    Returns:
        cenX, cenY (float, float): the pixel position of the mass center 
        sz (float): psf size
        e1, e2 (float, float): psf ellipticity
        REE80 (float): radius of REE80 in arcseconds
    """
    psfSampleSize = psfSampleSize*1e-3 #mm

    REE80 = -1.0  ##encircling 80% energy
    if SigRange is True:
        if TailorScheme == 1:
            psfMat = imSigRange(psfMat, fraction=0.80)
            psfInfo['psfMat'] = psfMat  #set on/off
        if TailorScheme == 2:
            img = psfTailor(psfMat, apSizeInArcsec=0.5)
            imgX, REE80 = psfEncircle(psfMat)
            psfMat = img
            REE80 = REE80[0]
                
    if CalcPSFcenter is True:
        img = psfMat/np.sum(psfMat)
        y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
        cenX = x
        cenY = y        
    if CalcPSFcenter is False:
        cenPix_X = psfMat.shape[1]/2 #90
        cenPix_Y = psfMat.shape[0]/2 #90
        cenX = cenPix_X + psfInfo['centroid_x']/psfSampleSize
        cenY = cenPix_Y - psfInfo['centroid_y']/psfSampleSize

    pixSize = 1 
    sz, e1, e2 = psfSecondMoments(psfMat, cenX, cenY, pixSize=pixSize)
        
    return cenX, cenY, sz, e1, e2, REE80


def psfStack(*psfMat):
    """
    stacked image from the different psfs

    Parameters:
        *psfMat (numpy.array): the different psfs for stacking
 
    Returns:
        img (numpy.array): image
    """
    nn = len(psfMat)
    img = np.zeros_like(psfMat[0])
    for ii in range(nn):
        img += psfMat[ii]/np.sum(psfMat[ii])
    img /= np.sum(img)
    return img



##################################################
#             B. psf interpolation               #
##################################################
def img2fits(img, fitsName=None):
    """
    saving image to fits file

    Parameters:
        img (numpy.array): image
        fitsName (string): path+filename of fits

    Returns:
    """
    from astropy.io import fits
    grey    = fits.PrimaryHDU(img)
    greyHDU = fits.HDUList([grey])
    if fitsName != None:
        greyHDU.writeto(fitsName)


def psfMatLoad(iccd, iwave, psfPath, psfSampleSize=5, CalcPSFsize=False, CalcPSFcenter=True):
    """
    load psf for interpolation
 
    Parameters:
        iccd, iwave, psfPath: # of ccd/wave and path for psfs
        CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: False
        CalcPSFcenter (bool-optional): whether calculate psf center. Default: True

    Returns:
        PSFMat (numpy.array): images
        cen_col, cen_row (numpy.array, numpy.array): position of psf center in the view field
    """
    psfSet = []
    for ipsf in range(1, 901):
        psfInfo = LoadPSF(iccd, iwave, ipsf, psfPath, CalcPSFsize=CalcPSFsize, CalcPSFcenter=CalcPSFcenter, InputMaxPixelPos=True)
        psfSet.append(psfInfo)

    npsf = len(psfSet)
    ngy, ngx = psfSet[0]['psfMat'].shape
    PSFMat = np.zeros([npsf, ngy, ngx])
    cen_col= np.zeros(npsf)
    cen_row= np.zeros(npsf)
    FieldPos = False
    for ipsf in range(npsf):
        PSFMat[ipsf, :, :] = psfSet[ipsf]['psfMat']
        if FieldPos == True:
            cen_col[ipsf] = psfSet[ipsf]['field_x'] #cx
            cen_row[ipsf] = psfSet[ipsf]['field_y'] #cy
        if FieldPos == False:
            cen_col[ipsf] = psfSet[ipsf]['imgMaxPosx_ccd'] #cx
            cen_row[ipsf] = psfSet[ipsf]['imgMaxPosy_ccd'] #cy
    return PSFMat, cen_col, cen_row


def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
    """
    find nearest meighbors by 2D-KDTree

    Parameters:
        tx, ty (float, float): a given position
        px, py (numpy.array, numpy.array): position data for tree
        dr (float-optional): distance
        dn (int-optional): nearest-N
        OnlyDistance (bool-optional): only use distance to find neighbors. Default: True

    Returns:
        dataq (numpy.array): index
    """
    import scipy.spatial as spatial

    datax = px
    datay = py
    tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))

    dataq=[]
    rr = dr
    if OnlyDistance == True:
        dataq = tree.query_ball_point([tx, ty], rr)
    if OnlyDistance == False:
        while len(dataq) < dn:
            dataq = tree.query_ball_point([tx, ty], rr)
            rr += dr
        dd = np.hypot(datax[dataq]-tx, datay[dataq]-ty)
        ddSortindx = np.argsort(dd)
        dataq = np.array(dataq)[ddSortindx[0:dn]]
    return dataq


def psfCentering(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28, CenteringMode=1):
    """
    centering psf within an aperture
    
    Parameters:
        img (numpy.array): image
        apSizeInArcsec (float-optional): aperture size in arcseconds.
        psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
        focalLengthInMeters (float-optional): csst focal length im meters.
        CenteringMode (int-optional): how to center psf images

    Returns:
        imgT (numpy.array)
    """
    if CenteringMode == 1:
        imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
    if CenteringMode == 2:
        y,x = ndimage.center_of_mass(img)  #y-rows, x-cols
        imgMaxPix_x = int(x)
        imgMaxPix_y = int(y)
    apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
    apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
    apSizeInPix = np.int(np.ceil(apSizeInPix))
    imgT = np.zeros_like(img)
    ngy, ngx = img.shape
    cy = int(ngy/2)
    cx = int(ngx/2)
    imgT[cy-apSizeInPix:cy+apSizeInPix+1, 
         cx-apSizeInPix:cx+apSizeInPix+1] = \
    img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1, 
        imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]    
    return imgT


def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=False):
    """
    psf interpolation by IDW

    Parameters:
        px, py (float, float): position of the target
        PSFMat (numpy.array): image
        cen_col, cen_row (numpy.array, numpy.array): potions of the psf centers
        IDWindex (int-optional): the power index of IDW
        OnlyNeighbors (bool-optional): only neighbors are used for psf interpolation

    Returns:
        psfMaker (numpy.array)        
    """
    minimum_psf_weight = 1e-8
    ref_col = px
    ref_row = py
    
    ngy, ngx = PSFMat[0, :, :].shape
    npsf = PSFMat[:, :, :].shape[0]
    psfWeight = np.zeros([npsf])
    
    if OnlyNeighbors == True:
        neigh = findNeighbors(px, py, cen_col, cen_row, dr=5., dn=9, OnlyDistance=False)
        neighFlag = np.zeros(npsf)
        neighFlag[neigh] = 1
        print("neigh:", neigh)

    for ipsf in range(npsf):
        if OnlyNeighbors == True:
            if neighFlag[ipsf] != 1:
                continue

        dist = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
        if IDWindex == 1:
            psfWeight[ipsf] = dist
        if IDWindex == 2:
            psfWeight[ipsf] = dist**2
        if IDWindex == 3:
            psfWeight[ipsf] = dist**3
        if IDWindex == 4:
            psfWeight[ipsf] = dist**4
        psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
        psfWeight[ipsf] = 1./psfWeight[ipsf]
    psfWeight /= np.sum(psfWeight)

    psfMaker  = np.zeros((ngy, ngx), dtype='float64')
    for ipsf in range(npsf):
        if OnlyNeighbors == True:
            if neighFlag[ipsf] != 1:
                continue
            
        iPSFMat = PSFMat[ipsf, :, :].copy()
        iPSFMat = psfCentering(iPSFMat, CenteringMode=1)
        ipsfWeight = psfWeight[ipsf]
        psfMaker += iPSFMat * ipsfWeight
    psfMaker /= np.nansum(psfMaker)
    
    return psfMaker


def psfMaker_PCA(px, py, PSFMat, cen_col, cen_row, OnlyNeighbors=False, libPCApath='libPCA/libPCA.so'):
    """
    psf interpolation by PCA
    
    Parameters:

    Returns:
    """
    ref_col = px
    ref_row = py
    
    ngy, ngx = PSFMat[0, :, :].shape
    npsf = PSFMat[:, :, :].shape[0]
    
    neigh   = findNeighbors(px, py, cen_col, cen_row, dr=0.3, dn=5, OnlyDistance=False)
    npsfX   = len(neigh)
    psfMatX = np.zeros([npsfX, ngy, ngx])
    cen_colX= np.zeros(npsfX)
    cen_rowX= np.zeros(npsfX)
    for ipsf in range(npsfX):
        psfMatX[ipsf, :, :] = PSFMat[neigh[ipsf], :, :]
        cen_colX[ipsf] = cen_col[neigh[ipsf]]
        cen_rowX[ipsf] = cen_row[neigh[ipsf]]

    psfMaker  = np.zeros((ngy, ngx), dtype='float64')
    if OnlyNeighbors == True:
        PCAbasef, PCAcoeff = psfPCA_generator(psfMatX, npsfX, ngx, libPCApath)
        nPCA  = npsfX
        for iPCA in range(nPCA):
            coeffX = fitPoly(ref_col, ref_row, cen_colX, cen_rowX, PCAcoeff[:, iPCA], order=2)
            psfMaker += coeffX*PCAbasef[iPCA, :, :]          
    
    return psfMaker


def psfPCA_generator(psfMat, npsf, npix, libPCApath):
    """
    generate PCs from psfMat
  
    Parameters:

    Returns:

    """
    libPCA = ctypes.CDLL(libPCApath)  # CDLL加载库

    libPCA.psfPCA.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)]

    Nstar = npsf
    Mp    = npix*npix
    NM    = Nstar*Mp
    NN    = Nstar*Nstar
    arr   = (ctypes.c_float*NM)()
    basef = (ctypes.c_double*NM)()
    coeff = (ctypes.c_double*NN)()

    psfT  = np.zeros(NM)
    for ipsf in range(npsf):
        lp = 0 + ipsf*Mp
        up = Mp+ ipsf*Mp
        ipsfMat = psfMat[ipsf, :, :]
        psfT[lp:up] = ipsfMat.reshape(Mp)

    arr[:] = psfT
    libPCA.psfPCA(arr, Nstar, Mp, basef, coeff)

    PCAbasef = np.zeros([npsf, npix, npix])
    PCAcoeff = np.zeros([npsf, npsf])
    for ipsf in range(npsf):
        lp = 0 + ipsf*Mp
        up = Mp+ ipsf*Mp
        PCAbasef[ipsf, :, :] = np.array(basef[lp:up]).reshape(npix, npix)

        lp = 0   + ipsf*npsf
        up = npsf+ ipsf*npsf
        PCAcoeff[ipsf, :] = np.array(coeff[lp:up])

    return PCAbasef, PCAcoeff

def fitPoly(px, py, datax, datay, dataz, order = 2):
    if order == 1:
        # best-fit linear plane
        A = np.c_[datax, datay, np.ones(datax.shape[0])]
        C,_,_,_ = scipy.linalg.lstsq(A, dataz)    # coefficients
        pz = C[0]*px + C[1]*py + C[2]
    elif order == 2:
        # best-fit quadratic curve
        A = np.c_[np.ones(datax.shape[0]), np.c_[datax, datay], np.prod(np.c_[datax, datay], axis=1), np.c_[datax, datay]**2]
        C,_,_,_ = scipy.linalg.lstsq(A, dataz)
        pz = np.dot(np.c_[1, px, py, px*py, px**2, py**2], C)
    """
    elif order == 3:
       # best-fit cubic curve
        A = np.c_[np.ones(datax.shape[0]), np.c_[datax, datay], np.prod(np.c_[datax, datay], axis=1), np.c_[datax, datay]**2, np.c_[datax, datay]**3]
        C,_,_,_ = scipy.linalg.lstsq(A, dataz)
        pz = np.dot(np.c_[1, px, py, px*py, px**2, py**2, px**3, py**3], C)
    """
    return pz




"""
############################
### not used temporarily ###
############################
def psfSplineMake(px, py, PSFMat, cen_col, cen_row, OnlyNeighbors=False):
    minimum_psf_weight = 1e-8
    ref_col = px
    ref_row = py
    
    cdelt1p = 1
    cdelt2p = 1
    
    ngy, ngx = PSFMat[0, :, :].shape
    psfx = np.linspace(0, ngx-1, ngx)
    psfy = np.linspace(0, ngy-1, ngy)

    npsf = PSFMat[:, :, :].shape[0]
    psfWeight = np.zeros([npsf])
    for ipsf in range(npsf):
        psfWeight[ipsf] = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
        psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
        psfWeight[ipsf] = 1./psfWeight[ipsf]
    psfWeight /= np.sum(psfWeight)

    psf  = np.zeros((ngy, ngx), dtype='float64')
    for ipsf in range(npsf):
        iPSFMat = PSFMat[ipsf, :, :]
        ipsfWeight = psfWeight[ipsf]
        psf += iPSFMat * ipsfWeight

    psf /= (np.nansum(psf) * cdelt1p * cdelt2p)
    psfSpline = RectBivariateSpline(psfy, psfx, psf)
    return psf, psfSpline


def psfToImage(psfSpline, cutoff_radius=180):
    ng = 180
    img = np.zeros([ng, ng], dtype='float64')
    for i in range(ng):
        for j in range(ng):
            star_row = 5
            star_column = 5
            if np.sqrt((j-star_column)**2 + (i-star_row)**2) <= cutoff_radius:
                star_flux = 8
                column_cen = j #j - star_column
                row_cen = i #i - star_row
                img[i,j] += star_flux * psfSpline.integral(row_cen-0.5, row_cen+0.5, column_cen-0.5, column_cen+0.5)
    return img
"""



##################################################
#                C. csstPSF class                #
##################################################
class PSFimg(object):
    def __init__(self, iccd, iwave, psfPath):
        self.iccd = iccd
        self.iwave= iwave
        self.psfPath = psfPath

        #loading psfSet >>>
        """
        psfSet = []
        for ipsf in range(1, 901):
            psfInfo = LoadPSF(iccd, iwave, ipsf, psfPath, CalcPSFsize=True, CalcPSFcenter=True, SigRange=False)
            psfSet.append(psfInfo)
        self.psfSet  = psfSet
        """
        a, b, c = psfMatLoad(iccd, iwave, psfPath)
        self.psfMat = a
        self.cenPosx= b
        self.cenPosy= c

    def PSFinplace(self, px, py, interpScheme=1):
        if interpScheme == 1:
            idwIndx = 2
            psf = psfMaker_IDW(px, py, self.psfMat, self.cenPosx, self.cenPosy, IDWindex=idwIndx, OnlyNeighbors=True)
        if interpScheme ==2:
            libPCA = "/Users/chengliangwei/Desktop/csstPSF/libPCA/libPCA.so"
            psf = psfMaker_PCA(px, py, self.psfMat, self.cenPosx, self.cenPosy, OnlyNeighbors=True, libPCApath=libPCA)

        img = galsim.ImageF(psf, scale=0.074/2)
        xpsf = galsim.InterpolatedImage(img)
        
        return xpsf

    """
    def gcPlot(self, psf,pscale=0.074,figout="GC.png"):
        size = np.size(psf,axis=0)
        cxy = 0.5*(size-1)
        width = 0.5*size
        # log scale
        radius = np.arange(np.log10(0.2),np.log10(width),0.01)
        radius = 10.0**radius
        nr = len(radius)
        gc = []
        for i in range(nr): 
                iflux, iferr, xflag = sep.sum_circle(psf,cxy,cxy,radius[i],subpix=0)
                gc += [iflux.tolist()]

        # Estimate the radius for a given flux ratio
        fratio = 0.8
        mid = [i for i in range(nr) if gc[i]<=fratio and gc[i+1]>fratio][0]
        r0, r1 = radius[mid], radius[mid+1]
        gc0, gc1 = gc[mid], gc[mid+1]
        r5 = (fratio-gc0)/(gc1-gc0)*(r1-r0) + r0
        hlf = r5*pscale
        # plot
        pfit = interp1d(radius, gc, kind='cubic')
        fig = pl.figure(figsize=(5.5,4.0))
        ax = fig.add_axes([0.16,0.15,0.80,0.81])
        ax.plot(radius*pscale, pfit(radius), "k", linewidth=2.0)
        ax.plot(radius*pscale, gc, "*r", markersize=5.0,mec="r",alpha=0.3)
        ax.plot([hlf,hlf],[0,fratio],"k",linewidth=2.5)
        ax.plot([0,hlf],[fratio,fratio],"k",linewidth=2.5)
        ax.text(radius[10]*pscale,0.6,"$r_{%.1f}$=%.2f\""%(fratio,hlf))
        ax.set_xlabel("Radius (arcsec)",fontsize=15)
        ax.set_ylabel("Growth of Curve",fontsize=15)
        ax.set_xscale("log")
        ax.set_xlim(radius[0]*pscale,radius[-1]*pscale)
        ax.set_ylim(0.0,1.0)
        for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(15)
        for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(15)
        pl.savefig(figout)
        pl.clf()
        pl.close()

        return
    """

    def PSFspin(self, psf, sigSpin, sigGauss, dx, dy):
        """
        The PSF profile at a given image position relative to the axis center

        Parameters:
        theta : spin angles in a given exposure in unit of [arcsecond]
        dx, dy: relative position to the axis center in unit of [pixels]

        Return:
        Spinned PSF: g1, g2 and axis ratio 'a/b'
        """
        a2Rad = np.pi/(60.0*60.0*180.0)

        ff = sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
        rc = np.sqrt(dx*dx + dy*dy)
        cpix = rc*(sigSpin*a2Rad)

        beta = (np.arctan2(dy,dx) + np.pi/2)
        ell = cpix**2/(2.0*ff**2+cpix**2)
        #ell *= 10.0
        qr = np.sqrt((1.0+ell)/(1.0-ell))

        #psfShape = galsim.Shear(e=ell, beta=beta)
        #g1, g2 = psfShape.g1, psfShape.g2
        #qr = np.sqrt((1.0+ell)/(1.0-ell))

        #return ell, beta, qr
        PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
        return psf.shear(PSFshear), PSFshear(base)



##################################################
#                  D. TEST                       #
##################################################
def psfMaker_IDW_test(tpsf, px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=False):
    minimum_psf_weight = 1e-8
    ref_col = px
    ref_row = py
    
    ngy, ngx = PSFMat[0, :, :].shape
    npsf = PSFMat[:, :, :].shape[0]
    psfWeight = np.zeros([npsf])

    if OnlyNeighbors == True:
        neigh = findNeighbors(px, py, cen_col, cen_row, dr=0.1, dn=9, OnlyDistance=False)
        neighFlag = np.zeros(npsf)
        neighFlag[neigh] = 1
    
    for ipsf in range(npsf):
        if OnlyNeighbors == True:
            if neighFlag[ipsf] != 1:
                continue

        dist = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
        if IDWindex == 1:
            psfWeight[ipsf] = dist
        if IDWindex == 2:
            psfWeight[ipsf] = dist**2
        if IDWindex == 3:
            psfWeight[ipsf] = dist**3
        if IDWindex == 4:
            psfWeight[ipsf] = dist**4
        psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
        psfWeight[ipsf] = 1./psfWeight[ipsf]
    psfWeight /= np.sum(psfWeight)

    psfMaker  = np.zeros((ngy, ngx), dtype='float64')
    for ipsf in range(npsf):
        """
        if OnlyNeighbors == True:
            iy, ix = np.unravel_index(ipsf, (10,10))
            ty, tx = np.unravel_index(tpsf, (10,10))
            if np.abs(iy - ty) > 1 or np.abs(ix - tx) > 1:
                continue
        """
        if OnlyNeighbors == True:
            if neighFlag[ipsf] != 1:
                continue

        if ipsf == tpsf:
            continue

        iPSFMat = PSFMat[ipsf, :, :].copy()
        iPSFMat = psfCentering(iPSFMat, CenteringMode=1)
        ipsfWeight = psfWeight[ipsf]
        psfMaker += iPSFMat * ipsfWeight
    psfMaker /= np.nansum(psfMaker)
    
    return psfMaker


def psfMaker_PCA_test(tpsf, px, py, PSFMat, cen_col, cen_row, OnlyNeighbors=False, libPCApath='libPCA/libPCA.so'):
    """
    psf interpolation by PCA
    
    Parameters:

    Returns:
    """
    ref_col = px
    ref_row = py
    
    ngy, ngx = PSFMat[0, :, :].shape
    npsf = PSFMat[:, :, :].shape[0]
    
    neigh   = findNeighbors(px, py, cen_col, cen_row, dr=0.3, dn=9, OnlyDistance=False)
    npsfX   = len(neigh)

    #去掉tpsf,neigh中排在第一个是最近的psf
    print("CHECK:::", cen_col[neigh[0]], cen_row[neigh[0]], cen_col[tpsf], cen_row[tpsf], cen_col[neigh[0]]-cen_col[tpsf], cen_row[neigh[0]]-cen_row[tpsf])
    psfMatX = np.zeros([npsfX-1, ngy, ngx])
    cen_colX= np.zeros(npsfX-1)
    cen_rowX= np.zeros(npsfX-1)
    for ipsf in range(npsfX):
        if ipsf == 0:
            continue
        psfMatX[ipsf-1, :, :] = PSFMat[neigh[ipsf], :, :]
        cen_colX[ipsf-1] = cen_col[neigh[ipsf]]
        cen_rowX[ipsf-1] = cen_row[neigh[ipsf]]

    psfMaker  = np.zeros((ngy, ngx), dtype='float64')
    if OnlyNeighbors == True:
        PCAbasef, PCAcoeff = psfPCA_generator(psfMatX, npsfX-1, ngx, libPCApath)
        nPCA  = npsfX-1
        for iPCA in range(nPCA):
            coeffX = fitPoly(ref_col, ref_row, cen_colX, cen_rowX, PCAcoeff[:, iPCA], order=2)
            psfMaker += coeffX*PCAbasef[iPCA, :, :]          
    
    return psfMaker


def test_loadPSF():
    iccd = 1  #[1, 30]
    iwave= 1  #[1, 4]
    ipsf = 1  #[1, 100]
    psfPath = '/Users/chengliangwei/csstPSFdata/CSSOS_psf_ciomp'

    psfSet = []
    for ipsf in range(1, 901):
        psfInfo = LoadPSF(iccd, iwave, ipsf, psfPath, CalcPSFsize=True, CalcPSFcenter=True, SigRange=False)
        psfSet.append(psfInfo)

    print('psfSet has been loaded.')
    print('Usage: psfSet[i][keys]')
    print('psfSet.keys:', psfSet[0].keys())
    return psfSet

def test_psfPCA():
    #load psf
    print('load psf...')
    psfSet = test_loadPSF()

    #set input for psfPCA calc.
    print('PCA calc...')
    npsf = 5
    npix = 180
    psfMat = np.zeros([npsf, npix, npix])
    libPCApath = './libPCA/libPCA.so'
 
    for ipsf in range(5):
        psfMat[ipsf, :, :] = psfSet[ipsf]['psfMat']
    PCAbasef, PCAcoeff = psfPCA_generator(psfMat, npsf, npix, libPCApath)

    #plot check
    print('plot...')
    fig = plt.figure(figsize=(20, 10))
    cc = 90
    dcc= 15
For faster browsing, not all history is shown. View entire blame