An error occurred while loading the file. Please try again.
-
Fang Yuedong authored29ac5666
import sys
import ctypes
import numpy as np
from scipy import ndimage
import scipy.spatial as spatial
###定义PSF像素的全局坐标###
def psfPixelLayout(nrows, ncols, cenPosRow, cenPosCol, pixSizeInMicrons=5.0):
"""
convert psf pixels to physical position
Parameters:
nrows, ncols (int, int): psf sampling with [nrows, ncols].
cenPosRow, cenPosCol (float, float): A physical position of the chief ray for a given psf.
pixSizeInMicrons (float-optional): The pixel size in microns from the psf sampling.
Returns:
psfPixelPos (numpy.array-float): [posx, posy] in mm for [irow, icol]
Notes:
1. show positions on ccd, but not position on image only [+/- dy]
"""
psfPixelPos = np.zeros([2, nrows, ncols])
if nrows % 2 != 0:
sys.exit()
if ncols % 2 != 0:
sys.exit()
cenPix_row = nrows/2 + 1 #中心主光线对应pixle [由长光定义]
cenPix_col = ncols/2 + 1
for irow in range(nrows):
for icol in range(ncols):
delta_row = ((irow + 1) - cenPix_row)*pixSizeInMicrons*1e-3
delta_col = ((icol + 1) - cenPix_col)*pixSizeInMicrons*1e-3
psfPixelPos[0, irow, icol] = cenPosCol + delta_col
psfPixelPos[1, irow, icol] = cenPosRow - delta_row #note-1:in CCD全局坐标
return psfPixelPos
###查找最大pixel位置###
def findMaxPix(img):
"""
get the pixel position of the maximum-value
Parameters:
img (numpy.array-float): image
Returns:
imgMaxPix_x, imgMaxPix_y (int, int): pixel position in columns & rows
"""
maxIndx = np.argmax(img)
maxIndx = np.unravel_index(maxIndx, np.array(img).shape)
imgMaxPix_x = maxIndx[1]
imgMaxPix_y = maxIndx[0]
return imgMaxPix_x, imgMaxPix_y
###查找neighbors位置###
def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
"""
find nearest neighbors by 2D-KDTree
Parameters:
tx, ty (float, float): a given position
px, py (numpy.array, numpy.array): position data for tree
dr (float-optional): distance
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
dn (int-optional): nearest-N
OnlyDistance (bool-optional): only use distance to find neighbors. Default: True
Returns:
dataq (numpy.array): index
"""
datax = px
datay = py
tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))
dataq=[]
rr = dr
if OnlyDistance == True:
dataq = tree.query_ball_point([tx, ty], rr)
if OnlyDistance == False:
while len(dataq) < dn:
dataq = tree.query_ball_point([tx, ty], rr)
rr += dr
dd = np.hypot(datax[dataq]-tx, datay[dataq]-ty)
ddSortindx = np.argsort(dd)
dataq = np.array(dataq)[ddSortindx[0:dn]]
return dataq
###查找neighbors位置-hoclist###
def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
if np.max(partx) > nhocx*dhocx:
print('ERROR')
sys.exit()
if np.max(party) > nhocy*dhocy:
print('ERROR')
sys.exit()
npart = partx.size
hoclist= np.zeros(npart, dtype=np.int32)-1
hoc = np.zeros([nhocy, nhocx], dtype=np.int32)-1
for ipart in range(npart):
ix = int(partx[ipart]/dhocx)
iy = int(party[ipart]/dhocy)
hoclist[ipart] = hoc[iy, ix]
hoc[iy, ix] = ipart
return hoc, hoclist
def hocFind(px, py, dhocx, dhocy, hoc, hoclist):
ix = int(px/dhocx)
iy = int(py/dhocy)
neigh=[]
it = hoc[iy, ix]
while it != -1:
neigh.append(it)
it = hoclist[it]
return neigh
def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None):
nhocy = nhocx = 20
pxMin = np.min(px)
pxMax = np.max(px)
pyMin = np.min(py)
pyMax = np.max(py)
dhocx = (pxMax - pxMin)/(nhocx-1)
dhocy = (pyMax - pyMin)/(nhocy-1)
partx = px - pxMin +dhocx/2
party = py - pyMin +dhocy/2
if hoc is None:
hoc, hoclist = hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy)
return hoc, hoclist
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
if hoc is not None:
tx = tx - pxMin +dhocx/2
ty = ty - pyMin +dhocy/2
itx = int(tx/dhocx)
ity = int(ty/dhocy)
ps = [-1, 0, 1]
neigh=[]
for ii in range(3):
for jj in range(3):
ix = itx + ps[ii]
iy = ity + ps[jj]
if ix < 0:
continue
if iy < 0:
continue
if ix > nhocx-1:
continue
if iy > nhocy-1:
continue
#neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
it = hoc[iy, ix]
while it != -1:
neigh.append(it)
it = hoclist[it]
#neigh.append(neightt)
#ll = [i for k in neigh for i in k]
if dn != -1:
ptx = np.array(partx[neigh])
pty = np.array(party[neigh])
dd = np.hypot(ptx-tx, pty-ty)
idx = np.argsort(dd)
neigh= np.array(neigh)[idx[0:dn]]
return neigh
###PSF中心对齐###
def psfCentering(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28, CenteringMode=1):
"""
centering psf within an aperture
Parameters:
img (numpy.array): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
CenteringMode (int-optional): how to center psf images
Returns:
imgT (numpy.array)
"""
if CenteringMode == 1:
imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
if CenteringMode == 2:
y,x = ndimage.center_of_mass(img) #y-rows, x-cols
imgMaxPix_x = int(x)
imgMaxPix_y = int(y)
apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
apSizeInPix = np.int(np.ceil(apSizeInPix))
imgT = np.zeros_like(img)
ngy, ngx = img.shape
cy = int(ngy/2)
cx = int(ngx/2)
imgT[cy-apSizeInPix:cy+apSizeInPix+1,
cx-apSizeInPix:cx+apSizeInPix+1] = \
img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
return imgT
###插值对齐-fft###
def psfCentering_FFT(image):
"""
centering psf within an aperture by FFT
"""
ny, nx = image.shape
py, px = ndimage.center_of_mass(image)
dx = (px - nx/2)
dy = (py - ny/2)
k=np.zeros((nx,ny,2),dtype=float)
fg=np.fft.fft2(image)
ge =np.zeros_like(fg)
inx = int(nx/2)
jny = int(ny/2)
#prepare for the phase multiply matrix
#left bottom
for i in range(inx+1):
for j in range(jny+1):
k[i][j][0]=i;
k[i][j][1]=j;
#top right
for i in range(inx-1):
for j in range(jny-1):
k[i+inx+1][j+jny+1][0]=(-(nx/2-1)+i)
k[i+inx+1][j+jny+1][1]=(-(ny/2-1)+j)
#bottom right
for i in range(inx+1):
for j in range(jny-1):
k[i][j+jny+1][0]=i
k[i][j+jny+1][1]=(-(ny/2-1)+j)
#top left
for i in range(inx-1):
for j in range(int(jny+1)):
k[i+inx+1][j][0]=(-(nx/2-1)+i)
k[i+inx+1][j][1]=j
for i in range(nx):
for j in range(ny):
ge[i][j]=fg[i][j]*np.exp(2.*np.pi*(dx*k[i][j][0]/nx+dy*k[i][j][1]/ny)*1j)
get=np.fft.ifft2(ge).real
return(get)
###图像叠加###
def psfStack(*psfMat):
"""
stacked image from the different psfs
Parameters:
*psfMat (numpy.array): the different psfs for stacking
Returns:
img (numpy.array): image
"""
nn = len(psfMat)
img = np.zeros_like(psfMat[0])
for ii in range(nn):
img += psfMat[ii]/np.sum(psfMat[ii])
img /= np.sum(img)
return img
###计算PSF椭率-接口###
def psfSizeCalculator(psfMat, psfSampleSize=2.5, CalcPSFcenter=True, SigRange=True, TailorScheme=2, cenPix=None):
"""
calculate psf size & ellipticity
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
Parameters:
psfMat (numpy.array): image
psfSampleSize (float-optional): psf size in microns.
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
SigRange (bool-optional): whether use psf tailor. Default: False
TailorScheme (int-optional): which method for psf tailor. Default: 1
Returns:
cenX, cenY (float, float): the pixel position of the mass center
sz (float): psf size
e1, e2 (float, float): psf ellipticity
REE80 (float): radius of REE80 in arcseconds
"""
psfSampleSize = psfSampleSize*1e-3 #mm
REE80 = -1.0 ##encircling 80% energy
if SigRange is True:
if TailorScheme == 1:
psfMat = imSigRange(psfMat, fraction=0.80)
psfInfo['psfMat'] = psfMat #set on/off
if TailorScheme == 2:
#img = psfTailor(psfMat, apSizeInArcsec=0.5)
imgX, REE80 = psfEncircle(psfMat, cenPix=cenPix)
#psfMat = img
REE80 = REE80[0]
if CalcPSFcenter is True:
img = psfMat/np.sum(psfMat)
y,x = ndimage.center_of_mass(img) #y-rows, x-cols
cenX = x
cenY = y
if CalcPSFcenter is False:
cenPix_X = psfMat.shape[1]/2 #90
cenPix_Y = psfMat.shape[0]/2 #90
cenX = cenPix_X + psfInfo['centroid_x']/psfSampleSize
cenY = cenPix_Y - psfInfo['centroid_y']/psfSampleSize
pixSize = 1
sz, e1, e2 = psfSecondMoments(psfMat, cenX, cenY, pixSize=pixSize)
return cenX, cenY, sz, e1, e2, REE80
###计算PSF椭率###
def psfSecondMoments(psfMat, cenX, cenY, pixSize=1):
"""
estimate the psf ellipticity by the second moment of surface brightness
Parameters:
psfMat (numpy.array-float): image
cenX, cenY (float, float): pixel position of the psf center
pixSize (float-optional): pixel size
Returns:
sz (float): psf size
e1, e2 (float, float): psf ellipticity
"""
apr = 0.5 #arcsec, 0.5角秒内测量
fl = 28. #meters
pxs = 5.0 #microns
apr = np.deg2rad(apr/3600.)*fl*1e6
apr = apr/pxs
apr = np.int(np.ceil(apr))
I = psfMat
ncol = I.shape[1]
nrow = I.shape[0]
w = 0.0
w11 = 0.0
w12 = 0.0
w22 = 0.0
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
for icol in range(ncol):
for jrow in range(nrow):
x = icol*pixSize - cenX
y = jrow*pixSize - cenY
rr = np.sqrt(x*x + y*y)
wgt= 0.0
if rr <= apr:
wgt = 1.0
w += I[jrow, icol]*wgt
w11 += x*x*I[jrow, icol]*wgt
w12 += x*y*I[jrow, icol]*wgt
w22 += y*y*I[jrow, icol]*wgt
w11 /= w
w12 /= w
w22 /= w
sz = w11 + w22
e1 = (w11 - w22)/sz
e2 = 2.0*w12/sz
return sz, e1, e2
###计算REE80###
def psfEncircle(img, fraction=0.8, psfSampleSizeInMicrons=2.5, focalLengthInMeters=28, cenPix=None):
"""
psf tailor within a given percentage.
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage for psf tailor.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
img*wgt (numpy.array-float): image
REE80 (float): radius of REE80 in arcseconds.
"""
#imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
y,x = ndimage.center_of_mass(img) #y-rows, x-cols
imgMaxPix_x = x #int(x)
imgMaxPix_y = y #int(y)
if cenPix != None:
imgMaxPix_x = cenPix[0]
imgMaxPix_y = cenPix[1]
im1 = img.copy()
im1size = im1.shape
dis = np.zeros_like(img)
for irow in range(im1size[0]):
for icol in range(im1size[1]):
dx = icol - imgMaxPix_x
dy = irow - imgMaxPix_y
dis[irow, icol] = np.hypot(dx, dy)
nn = im1size[1]*im1size[0]
disX = dis.reshape(nn)
disXsortId = np.argsort(disX)
imgX = img.reshape(nn)
imgY = imgX[disXsortId]
psfFrac = np.cumsum(imgY)/np.sum(imgY)
ind = np.where(psfFrac > fraction)[0][0]
wgt = np.ones_like(dis)
#wgt[np.where(dis > dis[np.where(img == imgY[ind])])] = 0
REE80 = np.rad2deg(dis[np.where(img == imgY[ind])]*psfSampleSizeInMicrons*1e-6/focalLengthInMeters)*3600
return img*wgt, REE80
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
###图像能量百分比查找###
def imSigRange(img, fraction=0.80):
"""
extract the image within x-percent (DISCARD)
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage
Returns:
im1 (numpy.array-float): image
"""
im1 = img.copy()
im1size = im1.shape
im2 = np.sort(im1.reshape(im1size[0]*im1size[1]))
im2 = im2[::-1]
im3 = np.cumsum(im2)/np.sum(im2)
loc = np.where(im3 > fraction)
#print(im3[loc[0][0]], im2[loc[0][0]])
im1[np.where(im1 <= im2[loc[0][0]])]=0
return im1
###孔径内图像裁剪###
def psfTailor(img, apSizeInArcsec=0.5, psfSampleSizeInMicrons=5, focalLengthInMeters=28, cenPix=None):
"""
psf tailor within a given aperture size
Parameters:
img (numpy.array-float): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
imgT (numpy.array-float): image
"""
#imgMaxPix_x, imgMaxPix_y = findMaxPix(img)
y,x = ndimage.center_of_mass(img) #y-rows, x-cols
imgMaxPix_x = int(x)
imgMaxPix_y = int(y)
if cenPix != None:
imgMaxPix_x = int(cenPix[0])
imgMaxPix_y = int(cenPix[1])
apSizeInMicrons = np.deg2rad(apSizeInArcsec/3600.)*focalLengthInMeters*1e6
apSizeInPix = apSizeInMicrons/psfSampleSizeInMicrons
apSizeInPix = np.int(np.ceil(apSizeInPix))
print('apSizeInPix=',apSizeInPix)
imgT = np.zeros_like(img)
imgT[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1] = \
img[imgMaxPix_y-apSizeInPix:imgMaxPix_y+apSizeInPix+1,
imgMaxPix_x-apSizeInPix:imgMaxPix_x+apSizeInPix+1]
return imgT
###centroid with a window###
def centroidWgt(img, nt=160):
#libCentroid = ctypes.CDLL('/public/home/weichengliang/lnData/CSST_new_framwork/csstPSF/libCentroid/libCentroid.so') # CDLL加载库
libCentroid = ctypes.CDLL('/public/home/weichengliang/lnData/CSST_new_framwork/csstPSF_20210108/libCentroid/libCentroid.so') # CDLL加载库
libCentroid.centroidWgt.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double)]
libCentroid.imSplint.argtypes = [ctypes.POINTER(ctypes.c_float), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_double), ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
imx = img/np.sum(img)
ny, nx = imx.shape
#imx centroid
nn = nx*ny
arr = (ctypes.c_float*nn)()
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
arr[:] = imx.reshape(nn)
para = (ctypes.c_double*10)()
libCentroid.centroidWgt(arr, ny, nx, para)
imx_cy = para[3] #irow
imx_cx = para[4] #icol
#imx -> imy
nxt=nyt=nt
nn=nxt*nyt
yat = (ctypes.c_float*nn)()
libCentroid.imSplint(arr, ny, nx, para, nxt, nyt, yat)
imy = np.array(yat[:]).reshape([nxt, nyt])
return imy, imx_cx, imx_cy
'''
def psfCentering_wgt(ipsfMat, psf_image_x, psf_image_y, psfSampleSizeInMicrons=5.0):
img, cx, cy = centroidWgt(ipsfMat, nt=160)
nrows, ncols = ipsfMat.shape
cyt = (cy + nrows/2)*psfSampleSizeInMicrons*1e-3 +psf_image_y
cxt = (cx + ncols/2)*psfSampleSizeInMicrons*1e-3 +psf_image_x
return img, cxt, cyt
'''
###binning image###
def binningPSF(img, ngg):
imgX = img.reshape(ngg, img.shape[0]//ngg, ngg, img.shape[1]//ngg).mean(-1).mean(1)
return imgX