getInputPointing.py 6.48 KB
Newer Older
Xin Zhang's avatar
Xin Zhang committed
1
2
3
4
5
6
from tkinter.tix import INTEGER
import astropy.coordinates as coord
from astropy import units as u
from pylab import *
import numpy as np
import galsim
Xin Zhang's avatar
test    
Xin Zhang committed
7
import math
Xin Zhang's avatar
Xin Zhang committed
8
# from numba import jit
Xin Zhang's avatar
Xin Zhang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

class Chip(object):
    def __init__(self, chipID):
        self.chipID = chipID

        self.nchip_x = 6
        self.nchip_y = 5
        self.npix_tot_x = 59516
        self.npix_tot_y = 49752
        self.npix_gap_x = (534, 1309)
        self.npix_gap_y = 898

        self.cen_pix_x = 0
        self.cen_pix_y = 0

        self.npix_x = 9216
        self.npix_y = 9232
        self.pix_scale  = 0.074

    def getTanWCS(self, ra, dec, img_rot, pix_scale = None, xcen=None, ycen=None, logger=None):
        """ Get the WCS of the image mosaic using Gnomonic/TAN projection

        Parameter:
            ra, dec:    float
                        (RA, Dec) of pointing of optical axis
            img_rot:    galsim Angle object
                        Rotation of image
            pix_scale:  float
                        Pixel size in unit of as/pix
        Returns:
            WCS of the focal plane
        """
        if logger is not None:
            logger.info("    Construct the wcs of the entire image mosaic using Gnomonic/TAN projection")
        if (xcen == None) or (ycen == None):
            xcen = self.cen_pix_x
            ycen = self.cen_pix_y
        if pix_scale == None:
            pix_scale = self.pix_scale
        dudx =  -np.cos(img_rot.rad) * pix_scale
        dudy =  -np.sin(img_rot.rad) * pix_scale
        dvdx =  -np.sin(img_rot.rad) * pix_scale
        dvdy =  +np.cos(img_rot.rad) * pix_scale
        
        # dudx =  +np.sin(img_rot.rad) * pix_scale
        # dudy =  +np.cos(img_rot.rad) * pix_scale
        # dvdx =  -np.cos(img_rot.rad) * pix_scale
        # dvdy =  +np.sin(img_rot.rad) * pix_scale
        moscen = galsim.PositionD(x=xcen, y=ycen)
        sky_center = galsim.CelestialCoord(ra=ra*galsim.degrees, dec=dec*galsim.degrees)
        affine = galsim.AffineTransform(dudx, dudy, dvdx, dvdy, origin=moscen)
        WCS = galsim.TanWCS(affine, sky_center, units=galsim.arcsec)

        return WCS
    
    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID
    
    def getChipCenter(self):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """



        chipID = self.chipID

        rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        return galsim.PositionD(xcen, ycen)




# @jit()
def getSelectPointingList(center = [60,-40], radius = 2):
    points = np.loadtxt('skyMapOrSurveyList/sky.dat')

    
    center = center#ra dec
    radius = radius # degree
Xin Zhang's avatar
test    
Xin Zhang committed
115
116
117
118
119
120
121

    radii_dec = 1
    radii_ra = 1/math.cos(math.pi*center[1]/180)

    if radii_ra > 180:
        radii_ra = 180

Xin Zhang's avatar
Xin Zhang committed
122
123
124
    c_eclip = coord.SkyCoord(points[:,2]*u.degree, points[:,1]*u.degree,frame='barycentrictrueecliptic')
    c_equtor = c_eclip.transform_to('icrs')

Xin Zhang's avatar
test    
Xin Zhang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    # print(np.min((c_equtor.ra*u.degree).value), np.max((c_equtor.ra*u.degree).value))

    # c_equtor_sel = c_equtor
    # points_sel = points

    ra_range_lo = center[0]-radii_ra
    ra_range_hi = center[0]+radii_ra

    if ra_range_lo< 0:
        ids1 = ((c_equtor.ra*u.degree).value<ra_range_hi) | ((c_equtor.ra*u.degree).value>360+ra_range_lo)
    elif ra_range_hi > 360:
        ids1 = ((c_equtor.ra*u.degree).value>ra_range_lo) | ((c_equtor.ra*u.degree).value<ra_range_hi-360)
    else:
        ids1 = ((c_equtor.ra*u.degree).value > ra_range_lo) & ((c_equtor.ra*u.degree).value < ra_range_hi)


    dec_range_lo = center[1]-radii_dec
    if center[1]-radii_dec < -90:
        dec_range_lo = -90

    dec_range_hi = center[1]+radii_dec
    if center[1]+radii_dec > 90:
        dec_range_hi = 90
    
    ids3 = (c_equtor[ids1].dec*u.degree).value > dec_range_lo
    ids4 = (c_equtor[ids1][ids3].dec*u.degree).value < dec_range_hi
Xin Zhang's avatar
Xin Zhang committed
151

Xin Zhang's avatar
test    
Xin Zhang committed
152
    num = points[ids1][ids3][ids4].shape[0]
Xin Zhang's avatar
Xin Zhang committed
153
154
155
156

    p_result = np.zeros([num, 5])
    i = 0

Xin Zhang's avatar
test    
Xin Zhang committed
157
    for p,p_ in zip(points[ids1][ids3][ids4],c_equtor[ids1][ids3][ids4]):
Xin Zhang's avatar
Xin Zhang committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        ra = (p_.ra*u.degree).value
        dec = (p_.dec*u.degree).value
        # print(ra, dec)
        lon = p[2]
        lat = p[1]

        p_result[i,0] = ra
        p_result[i,1] = dec
        p_result[i,2] = lon
        p_result[i,3] = lat
        p_result[i,4] = -113.4333
        i = i + 1
    
    return p_result


def findPointingbyChipID(chipID = 8, ra = 60., dec = -40.):
    chip_center = [ra, dec]
    p_list = getSelectPointingList(center = chip_center)
    pchip = Chip(chipID)

    p_num = p_list.shape[0]

    min_d = 1000000000

    r_ra = ra
    r_dec = dec
    for i in np.arange(0,p_num,1):
        ra_n = p_list[i,0]
        dec_n = p_list[i,1]
        rot = p_list[i,4]*galsim.degrees
        chip_wcs = pchip.getTanWCS(ra_n, dec_n, rot)

        c_center = pchip.getChipCenter()

        c_world = chip_wcs.toWorld(c_center)

        ra_s = c_world.ra.deg
        dec_s = c_world.dec.deg
        # print(ra, dec, ra_s, dec_s)
        d = (ra_s - ra)*(ra_s - ra) + (dec_s - dec)*(dec_s - dec)
        if d < min_d:
            min_d = d
            r_ra = ra_n
            r_dec = dec_n

    return galsim.CelestialCoord(ra=r_ra*galsim.degrees,dec=r_dec*galsim.degrees)





if __name__ == "__main__":

    pointing = findPointingbyChipID()

    # chipID = 8
    # pchip = Chip(chipID)
    # ra = pointing.ra.deg
    # dec = pointing.dec.deg
    # rot = -113.433
    # chip_wcs = pchip.getTanWCS(ra, dec, rot*galsim.degrees)

    # c_center = pchip.getChipCenter()

    # c_world = chip_wcs.toWorld(c_center)

    # ra_s = c_world.ra.deg
    # dec_s = c_world.dec.deg