SpecGenerator.py 15.5 KB
Newer Older
xin's avatar
init  
xin committed
1
2
3
4

'''
Author: zx
Date: 2021-04-08 13:49:35
5
LastEditTime: 2023-02-24 00:57:20
xin's avatar
init  
xin committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
LastEditors: xin zhangxinbjfu@gmail.com
Description: In User Settings Edit
FilePath: /undefined/Users/zhangxin/Work/SlitlessSim/sls_lit_demo/simDemo.py
'''

import galsim
import SpecDisperser
# from numpy import *
import numpy as np
from scipy import interpolate
import astropy.constants as acon
from astropy.table import Table
import math
from astropy.io import fits
import random

from astropy.table import Table
import matplotlib.pyplot as plt
24
import time
xin's avatar
init  
xin committed
25
26
27
28
29
30
31
32
33

import mpi4py.MPI as MPI

import os,sys

from . import Config


class SpecGenerator(object):
xin's avatar
xin committed
34
    def __init__(self,sedFn = 'a.txt', grating = 'GI', beam = 'A', aper = 2.0, xcenter = 5000,ycenter = 5000, p_size = 0.074, psf = None, skybg = 0.3, dark = 0.02, readout = 5, t = 150, expNum = 1, config = None, saturation = 90000):
xin's avatar
init  
xin committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
        self.sedFile = sedFn
        self.grating = grating
        self.beam = beam
        self.aper = aper
        self.xcenter = xcenter
        self.ycenter = ycenter
        self.p_size = p_size
        self.psf = psf
        self.skybg = skybg
        self.dark = dark
        self.readout = readout
        self.t = t
        self.expNum = expNum
        self.config = config
xin's avatar
xin committed
49
        self.saturation = saturation
xin's avatar
init  
xin committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    
    '''
    @description: 
    @param {*} fn: file name, include 2 column, wavelength(A)  and flux(erg/s/cm2/A) 
    @param {*} s: band start , unit A
    @param {*} e; end, unit A
    @param {*} deltL: sample interval for SED
    @return {*} sed, unit photo/s/m2/A
    '''
    def generateSEDfromFiles(self, fn, s, e, deltL):
        """
        s: lambda start, unit A
        e: lambda end, unit A

        return:
        SEDs is array, 2-dim, (gal_num+1)*(wavelength size), last row is wavelength
        """
        lamb = np.arange(s, e + deltL, deltL)
        spec_orig = np.loadtxt(fn)

        speci = interpolate.interp1d(spec_orig[:, 0], spec_orig[:, 1])
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        flux = y * lamb / (acon.h.value * acon.c.value) * 1e-13

        SED = Table(np.array([lamb, flux]).T,names=('WAVELENGTH', 'FLUX'))

        return SED


80
    def generateSpec1dforGal(self, s_n = 1.0, re = 1, pa = 90,q_ell = 0.6,limitfluxratio=0.9,deltLamb = 0.01):
xin's avatar
init  
xin committed
81
82
83

        specConfile = self.config.conFiles[self.grating]

84
        throughput_f = self.config.senFisle[self.grating] + self.config.orderIDs[self.beam] + '.fits'
xin's avatar
init  
xin committed
85

86
        sed = self.generateSEDfromFiles(self.sedFile,2500,10000,deltLamb)
87
88
89
90
91
92

        x_nominal = int(np.floor(self.xcenter + 0.5))
        y_nominal = int(np.floor(self.ycenter + 0.5))
        dx = self.xcenter - x_nominal+0.5
        dy = self.ycenter - y_nominal+0.5
        offset = galsim.PositionD(dx, dy)
xin's avatar
init  
xin committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        # print(skybg)
        # print(specConfile)
        # print(throughput_f)

        # plt.figure()
        # plt.plot(sed['WAVELENGTH'], sed['FLUX'])

        gal = galsim.Sersic(s_n, half_light_radius=re)

        gal_pa = pa * galsim.degrees
        gal_ell = gal.shear(q=q_ell, beta=gal_pa)

        conv_gal = galsim.Convolve([gal_ell,self.psf])


109
110
111
112
113
        stamp = conv_gal.drawImage(wcs=galsim.PixelScale(self.p_size), offset=offset)*self.t*self.expNum*math.pi*(self.aper/2)*(self.aper/2)
        stamp.setOrigin(0,0)
        origin_star = [y_nominal - (stamp.center.y - stamp.ymin),
                                x_nominal - (stamp.center.x - stamp.xmin)]

xin's avatar
init  
xin committed
114

115
116
        origin_star = [y_nominal - (stamp.center.y - stamp.ymin),
                                x_nominal - (stamp.center.x - stamp.xmin)]
xin's avatar
init  
xin committed
117

118
119
        sdp = SpecDisperser.SpecDisperser(orig_img=stamp, xcenter=x_nominal,
                                            ycenter=y_nominal, origin=origin_star,
xin's avatar
init  
xin committed
120
121
                                            tar_spec=sed,
                                            conf=specConfile,
122
                                            isAlongY=0, deltLamb = deltLamb/2.)
xin's avatar
init  
xin committed
123
124
125
126
127
128
129

        spec_orders = sdp.compute_spec_orders()
        
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])

        Aimg_orig = spec_orders[self.beam][0]
xin's avatar
xin committed
130
        Aimg_ = Aimg_orig
xin's avatar
init  
xin committed
131

xin's avatar
xin committed
132
        Aimg_ = Aimg_ + (self.skybg + self.dark)*self.t*self.expNum
xin's avatar
init  
xin committed
133

134
        np.random.seed(int(time.time()))
xin's avatar
xin committed
135
        Aimg_ = np.random.poisson(Aimg_)
xin's avatar
init  
xin committed
136
        for i in np.arange(self.expNum):
xin's avatar
xin committed
137
            Aimg_ = self.addReadoutNois(img = Aimg_, readout = self.readout)
xin's avatar
init  
xin committed
138

xin's avatar
xin committed
139
        Aimg = Aimg_ - (self.skybg + self.dark)*self.t*self.expNum
xin's avatar
init  
xin committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


        wave_pix = spec_orders[self.beam][5]
        wave_pos = spec_orders[self.beam][3]

        wave_pos_y=spec_orders[self.beam][4]

        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        err2_pix = np.zeros(sh[1])

        # print(spec_orders[beamOrder][4])
        # print(sh)
        # plt.figure()
        # plt.imshow(Aimg)
        y_cent_pos = int(np.round(np.mean(wave_pos_y)))

        tFlux = np.sum(spec_orders[self.beam][0])
        # print(tFlux)
        fluxRatio = 0
        for i in range(int(sh[0]/2)):
            pFlux = np.sum(spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1])
            
            fluxRatio = pFlux/tFlux
            if fluxRatio>limitfluxratio:
                break
166
167
168
169
170
171
172
173
        
        f1 = spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1].sum(0)
        f2 = spec_orders[self.beam][0].sum(0)
        ratio_vec = np.zeros_like(f1)
        nozero_flag = f2 != 0
        
        ratio_vec[nozero_flag] = f1[nozero_flag]/f2[nozero_flag]
        # ratio_vec = spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1].sum(0)/spec_orders[self.beam][0].sum(0)
xin's avatar
init  
xin committed
174
175
176
177
178
179
180
181
182
183
        y_range = i
        # print(y_range, fluxRatio)
        y_len_pix = 2 * y_range + 1
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[y_cent_pos-y_range:y_cent_pos+y_range+1, i])
            err2_pix[i] = sum(Aimg_orig[y_cent_pos-y_range:y_cent_pos+y_range+1, i]) + (self.skybg + self.dark)*self.t * y_len_pix * self.expNum + self.readout*self.readout * y_len_pix * self.expNum

        bRange = self.config.bandRanges[self.grating]
        wave_flux = np.zeros(wave_pix.shape[0])
        err_flux = np.zeros(wave_pix.shape[0])
xin's avatar
xin committed
184
        specRangeImg = []
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

        true_center = stamp.center + galsim.PositionD(self.xcenter-x_nominal, self.ycenter-y_nominal)
        wavePos_x = true_center.x + wave_pos - wave_pos[0]

        wavePos_x_interp = np.arange(int(wavePos_x[0]), int(wavePos_x[-1]))
        lam_trace = np.interp(wavePos_x_interp,wavePos_x,wave_pix)

        wave_flux = np.zeros(lam_trace.shape[0])
        err_flux = np.zeros(lam_trace.shape[0])



        for i in np.arange(1, lam_trace.shape[0] - 1):
            w = lam_trace[i]
            wave2pix_pos=wavePos_x_interp[i]
xin's avatar
init  
xin committed
200
201
202

            if (bRange[0] <= w <= bRange[1]):
                thp_w = thp_i(w)
203
204
205
206
207
208
209
                deltW = np.abs(w - lam_trace[i - 1]) / 2 + np.abs(lam_trace[i + 1] - w) / 2
                f = spec_pix[wave2pix_pos]
                f_ratio = ratio_vec[wave2pix_pos]
                if f_ratio==0:
                    f_ratio=1
                f = f / self.t / thp_w / deltW /self.expNum/f_ratio
                err = err2_pix[wave2pix_pos]
xin's avatar
init  
xin committed
210
                # err = err/ t / deltW
211
212
                err = np.sqrt(err)/ self.t / deltW/ thp_w /self.expNum/f_ratio
                specRangeImg.append(wave2pix_pos)
xin's avatar
init  
xin committed
213
214
215
216
217
218
219
220
                # err = err / thp_w 
            else:
                f = 0
                err = 0

            wave_flux[i] = f
            err_flux[i] = err
        
xin's avatar
xin committed
221
222
223
        Aimg_cal = Aimg_[y_cent_pos-y_range:y_cent_pos+y_range+1, specRangeImg]
        ids = Aimg_cal > self.saturation

xin's avatar
xin committed
224
225
        #1. saturation pixel number, 2. total pixel number, 3 saturation ratio, 4.flux ratio in photo aperture,5.max value,6.min value
        saturePix = np.zeros(6)
xin's avatar
xin committed
226
227
228
229

        saturePix[0] = Aimg_cal[ids].shape[0]
        saturePix[1] = Aimg_cal.shape[0]*Aimg_cal.shape[1]
        saturePix[2] = saturePix[0]/saturePix[1]
230
        saturePix[3] = 1
xin's avatar
xin committed
231
232
        saturePix[4] = np.amax(Aimg_cal)
        saturePix[5] = np.amin(Aimg_cal)
xin's avatar
xin committed
233
        
xin's avatar
init  
xin committed
234

235
236
237
238
239
240
241
242
243
        idx = (lam_trace >= bRange[0]-100)
        idx1 = (lam_trace[idx] <= bRange[1]+100)

        w_select = lam_trace[idx][idx1]
        f_select = wave_flux[idx][idx1]
        e_select =  err_flux[idx][idx1]
        lam_index = np.argsort(w_select)

        specTab = Table(np.array([w_select[lam_index], f_select[lam_index], e_select[lam_index]]).T,names=('WAVELENGTH', 'FLUX','ERR'))
xin's avatar
init  
xin committed
244
245
246
247
248
249

        # spec_orig = np.loadtxt(sedFile)

        # plt.figure()
        # plt.plot(spec_orig[:,0], spec_orig[:,1])

xin's avatar
xin committed
250
251
252
253
254
        # plt.figure()
        # plt.errorbar(wave_pix[idx][idx1], wave_flux[idx][idx1],err_flux[idx][idx1])
        # plt.legend([self.sedFile])
        # # plt.plot(wave_pix[idx][idx1], wave_flux[idx][idx1])
        # plt.show()
xin's avatar
xin committed
255
        return specTab, Aimg, stamp.array, saturePix
xin's avatar
init  
xin committed
256
257


258
    def generateSpec1dforStar(self,limitfluxratio = 0.8, deltLamb = 0.01):
259
        import matplotlib.pyplot as plt
xin's avatar
init  
xin committed
260
261
        specConfile = self.config.conFiles[self.grating]

262
        throughput_f = self.config.senFisle[self.grating] + self.config.orderIDs[self.beam] + '.fits'
xin's avatar
init  
xin committed
263

264
        sed = self.generateSEDfromFiles(self.sedFile,2500,10000,deltLamb)
xin's avatar
init  
xin committed
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        x_nominal = int(np.floor(self.xcenter + 0.5))
        y_nominal = int(np.floor(self.ycenter + 0.5))
        dx = self.xcenter - x_nominal+0.5
        dy = self.ycenter - y_nominal+0.5
        offset = galsim.PositionD(dx, dy)

        star = galsim.DeltaFunction()
            # star = star.withFlux(tel.pupil_area * exptime)
        star = galsim.Convolve(self.psf, star)
        stamp = star.drawImage(wcs=galsim.PixelScale(self.p_size), offset=offset,nx=100, ny=100)*self.t*self.expNum*math.pi*(self.aper/2)*(self.aper/2)
        stamp.setOrigin(0,0)
        # print(stamp.center)
        # kk = np.where(stamp.array == np.amax(stamp.array))
        # print(kk[0][0], kk[1][0])
        # plt.figure()
        # plt.imshow(stamp.array)

        # ttt = np.sum(stamp.array)
        # stamp.array[:,:]=0
        # stamp.array[stamp.center.y, stamp.center.x] = ttt
        
xin's avatar
init  
xin committed
287
288


289
        # stamp = self.psf.drawImage(wcs=galsim.PixelScale(self.p_size))*self.t*self.expNum*math.pi*(self.aper/2)*(self.aper/2)
xin's avatar
init  
xin committed
290

291
292
293
294
295
        origin_star = [y_nominal - (stamp.center.y - stamp.ymin),
                                x_nominal - (stamp.center.x - stamp.xmin)]

        sdp = SpecDisperser.SpecDisperser(orig_img=stamp, xcenter=x_nominal,
                                            ycenter=y_nominal, origin=origin_star,
xin's avatar
init  
xin committed
296
297
                                            tar_spec=sed,
                                            conf=specConfile,
298
                                            isAlongY=0,deltLamb = deltLamb/2.)
xin's avatar
init  
xin committed
299
300
301
302
303
304
305

        spec_orders = sdp.compute_spec_orders()
        
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])

        Aimg_orig = spec_orders[self.beam][0]
xin's avatar
xin committed
306
        Aimg_ = Aimg_orig
xin's avatar
init  
xin committed
307

xin's avatar
xin committed
308
        Aimg_ = Aimg_ + (self.skybg + self.dark)*self.t*self.expNum
309
        np.random.seed(int(time.time()))
xin's avatar
xin committed
310
        Aimg_ = np.random.poisson(Aimg_)
xin's avatar
init  
xin committed
311
        for i in np.arange(self.expNum):
xin's avatar
xin committed
312
            Aimg_ = self.addReadoutNois(img = Aimg_, readout = self.readout)
xin's avatar
init  
xin committed
313

xin's avatar
xin committed
314
        Aimg = Aimg_ - (self.skybg + self.dark)*self.t*self.expNum
xin's avatar
init  
xin committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340


        wave_pix = spec_orders[self.beam][5]
        wave_pos = spec_orders[self.beam][3]

        wave_pos_y=spec_orders[self.beam][4]

        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        err2_pix = np.zeros(sh[1])

        # print(spec_orders[beamOrder][4])
        # print(sh)
        # plt.figure()
        # plt.imshow(Aimg)
        y_cent_pos = int(np.round(np.mean(wave_pos_y)))

        tFlux = np.sum(spec_orders[self.beam][0])
        # print(tFlux)
        fluxRatio = 0
        for i in range(int(sh[0]/2)):
            pFlux = np.sum(spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1])
            
            fluxRatio = pFlux/tFlux
            if fluxRatio>limitfluxratio:
                break
341
342
343
344
345
346
347
        f1 = spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1].sum(0)
        f2 = spec_orders[self.beam][0].sum(0)
        ratio_vec = np.zeros_like(f1)
        nozero_flag = f2 != 0
        
        ratio_vec[nozero_flag] = f1[nozero_flag]/f2[nozero_flag]
        # ratio_vec = spec_orders[self.beam][0][y_cent_pos-i:y_cent_pos+i+1].sum(0)/spec_orders[self.beam][0].sum(0)
xin's avatar
init  
xin committed
348
349
350
351
352
353
354
355
        y_range = i
        # print(y_range, fluxRatio)
        y_len_pix = 2 * y_range + 1
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[y_cent_pos-y_range:y_cent_pos+y_range+1, i])
            err2_pix[i] = sum(Aimg_orig[y_cent_pos-y_range:y_cent_pos+y_range+1, i]) + (self.skybg + self.dark)*self.t * y_len_pix * self.expNum + self.readout*self.readout * y_len_pix * self.expNum

        bRange = self.config.bandRanges[self.grating]
356
        
xin's avatar
xin committed
357
358
359

        specRangeImg = []

360
361
362
363
364
365
366
367
368
369
370
371
        true_center = stamp.center + galsim.PositionD(self.xcenter-x_nominal, self.ycenter-y_nominal)
        wavePos_x = true_center.x + wave_pos - wave_pos[0]

        wavePos_x_interp = np.arange(int(wavePos_x[0]), int(wavePos_x[-1]))
        lam_trace = np.interp(wavePos_x_interp,wavePos_x,wave_pix)

        wave_flux = np.zeros(lam_trace.shape[0])
        err_flux = np.zeros(lam_trace.shape[0])

        for i in np.arange(1, lam_trace.shape[0] - 1):
            w = lam_trace[i]
            wave2pix_pos=wavePos_x_interp[i]
xin's avatar
init  
xin committed
372
373
374

            if (bRange[0] <= w <= bRange[1]):
                thp_w = thp_i(w)
375
376
377
378
379
380
381
                deltW = np.abs(w - lam_trace[i - 1]) / 2 + np.abs(lam_trace[i + 1] - w) / 2
                f = spec_pix[wave2pix_pos]
                f_ratio = ratio_vec[wave2pix_pos]
                if f_ratio==0:
                    f_ratio=1
                f = f / self.t / thp_w / deltW /self.expNum/f_ratio
                err = err2_pix[wave2pix_pos]
xin's avatar
init  
xin committed
382
                # err = err/ t / deltW
383
384
                err = np.sqrt(err)/ self.t / deltW/ thp_w /self.expNum/f_ratio
                specRangeImg.append(wave2pix_pos)
xin's avatar
init  
xin committed
385
386
387
388
389
390
391
                # err = err / thp_w 
            else:
                f = 0
                err = 0

            wave_flux[i] = f
            err_flux[i] = err
xin's avatar
xin committed
392
393
394
395

        Aimg_cal = Aimg_[y_cent_pos-y_range:y_cent_pos+y_range+1, specRangeImg]
        ids = Aimg_cal > self.saturation
        
xin's avatar
xin committed
396
397
        #1. saturation pixel number, 2. total pixel number, 3 saturation ratio, 4.flux ratio in photo aperture,5.max value,6.min value
        saturePix = np.zeros(6)
xin's avatar
xin committed
398
399
400
401

        saturePix[0] = Aimg_cal[ids].shape[0]
        saturePix[1] = Aimg_cal.shape[0]*Aimg_cal.shape[1]
        saturePix[2] = saturePix[0]/saturePix[1]
402
        saturePix[3] = 1
xin's avatar
xin committed
403
404
        saturePix[4] = np.amax(Aimg_cal)
        saturePix[5] = np.amin(Aimg_cal)
xin's avatar
init  
xin committed
405
        
406
407
408
409
410
411
412
        idx = (lam_trace >= bRange[0]-100)
        idx1 = (lam_trace[idx] <= bRange[1]+100)

        w_select = lam_trace[idx][idx1]
        f_select = wave_flux[idx][idx1]
        e_select =  err_flux[idx][idx1]
        lam_index = np.argsort(w_select)
xin's avatar
init  
xin committed
413

414
        specTab = Table(np.array([w_select[lam_index], f_select[lam_index], e_select[lam_index]]).T,names=('WAVELENGTH', 'FLUX','ERR'))
xin's avatar
init  
xin committed
415
416
417
418
419
420
421
422
423
424
425

        # spec_orig = np.loadtxt(sedFile)

        # plt.figure()
        # plt.plot(spec_orig[:,0], spec_orig[:,1])

        # plt.figure()
        # plt.errorbar(wave_pix[idx][idx1], wave_flux[idx][idx1],err_flux[idx][idx1])
        # plt.legend([self.sedFile])
        # # plt.plot(wave_pix[idx][idx1], wave_flux[idx][idx1])
        # plt.show()
xin's avatar
xin committed
426
        return specTab, Aimg, stamp.array, saturePix
xin's avatar
init  
xin committed
427
428

    def addReadoutNois(self, img = None, readout = 5):
429
        random.seed(time.time())
xin's avatar
init  
xin committed
430
431
432
433
434
435
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                img[i,j] += round(random.gauss(mu = 0, sigma = readout))

        return img