pycode.py 9.25 KB
Newer Older
Zhang Xin's avatar
init  
Zhang Xin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
'''
Author: Zhang Xin zhangx@bao.ac.cn
Date: 2024-01-02 13:34:39
LastEditors: Zhang Xin zhangx@bao.ac.cn
LastEditTime: 2024-03-25 13:51:33
FilePath: /csst-simulation/Users/zhangxin/Work/SlitlessSim/CSST_SIM/Star_spec/csst_spec_interp_clean/code/pycode.py
Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
'''
##运行下面在mac/linux下执行 
# cc -fPIC -shared main_singlestar.c -I/usr/include -I/usr/include/cfitsio -lcfitsio -lm -o test.dylib

import os
import numpy as np
from astropy.io import fits
import ctypes
from astropy.table import Table
import produceSED
Zhang Xin's avatar
Zhang Xin committed
18
import astropy.constants as atcons
Zhang Xin's avatar
Zhang Xin committed
19
import sys
Zhang Xin's avatar
init  
Zhang Xin committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# from ctypes import *

# struct STAR
# {
#   float logte;
#   float logg;
#   //float logL;
#   float Mass;
#   float Av;
#   float mu0;
#   float Z;
#   //float mbolmag;
# };

class Star(ctypes.Structure):
    _fields_ = [
               ('logte',ctypes.c_float),
               ('logg',ctypes.c_float),
               ('Mass',ctypes.c_float),
               ('Av', ctypes.c_float),
               ('mu0', ctypes.c_float),
               ('Z', ctypes.c_float)]

#CHANGE
#topdir='/run/media/chen/1TS/dupe/gitlab/csst_spec_interp/'
topdir='/home/zhangxin/CSST_SIM/star_spec/csst_spec_interp_clean/code/'
code_name='test.so'

d = ctypes.CDLL(os.path.join(topdir,code_name))
d.loadSpecLibs.argtypes=[ctypes.c_char_p, ctypes.c_char_p]
d.loadExts.argtypes=[ctypes.c_char_p]


#######################################################################################
#CHANGE
#nwv = d.loadSpecLibs(str.encode(os.path.join(topdir,'file_CK04.par')),str.encode(topdir))
#d.loadExts(str.encode(os.path.join(topdir,"spec/Ext_odonnell94_R3.1_CK04W.fits")))
#TO
nwv = d.loadSpecLibs(str.encode(os.path.join(topdir,'file_BT-Settl_CSST_wl1000-24000_R1000.par')),str.encode(topdir))
d.loadExts(str.encode(os.path.join(topdir,"spec/Ext_odonnell94_R3.1_CSST_wl1000-24000_R1000.fits")))
########################################################################################

print("Done loading Exts")
spec = (ctypes.c_float*nwv)()
wave = (ctypes.c_float*nwv)()
d.interpSingleStar.argtypes=[ctypes.Structure, ctypes.POINTER(ctypes.c_float)]


'''
#example for a single star
#s=Star(3.620752, 4.701155, 0.599979, 0.067540, 11.200001, 0.008501)
s=Star(3.9739766, 8.108173, 0.6525841, 0.077022046, 9.05, 0.024376422)
#s=Star(3.9739766, 4.99, 0.6525841, 0.077022046, 9.05, 0.024376422)
d.interpSingleStar(s, spec)
spec_ = spec[:]
print(spec[500:509])
'''

from astropy.table import Table
Zhang Xin's avatar
Zhang Xin committed
79
80
81
82
83
84
85
86
87
88
89
90
91

if len(sys.argv) < 2:
	print('usage:\n'+sys.argv[0]+' survey_result.txt')
	sys.exit(0)

catalogFn = str(sys.argv[1])

# catalogFn = "/nfsdata/share/CSSTsimInputCat_TH/C9_RA240_DECp30.fits"
# catalogFn = "/home/zhangxin/CSST_SIM/star_spec/csst_spec_interp_clean/code/data/catalog/trilegal.fits"
outdir = '/nfsdata/share/CSSOSDataProductsSims/trilegalCat/'
# outFn = "C9_RA240_DECp30_refCat_1.fits"

outFn = catalogFn.strip().split('/')[-1][0:-5] + "_refCat_1.fits"
Zhang Xin's avatar
init  
Zhang Xin committed
92
93
94
95
96
97
98
99
100
101
102
103
cat = Table.read(catalogFn)

filters = ['nuv','u','g','r','i','z','y']
filters_other = ['2MASS_H','2MASS_J','2MASS_Ks','GAIA_GAIA3.G','GAIA_GAIA3.Gbp','GAIA_GAIA3.Grp','GALEX_GALEX.FUV','GALEX_GALEX.NUV','LSST_u','LSST_g','LSST_r','LSST_i','LSST_z','LSST_y','PAN-STARRS_PS1.g','PAN-STARRS_PS1.r','PAN-STARRS_PS1.i','PAN-STARRS_PS1.z','PAN-STARRS_PS1.y','SLOAN_SDSS.u','SLOAN_SDSS.g','SLOAN_SDSS.r','SLOAN_SDSS.i','SLOAN_SDSS.z']
res = {}

nrows = len(cat)
for fi in filters:
    res[fi] = np.zeros(nrows)
for fi in filters_other:
    res[fi] = np.zeros(nrows)

Zhang Xin's avatar
Zhang Xin committed
104
105
parallaxs = np.zeros(nrows)

Zhang Xin's avatar
init  
Zhang Xin committed
106
107
108
109
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
rank_size = comm.Get_size()
Zhang Xin's avatar
Zhang Xin committed
110
print("------------------",rank_size, rank, nrows)
Zhang Xin's avatar
init  
Zhang Xin committed
111
112
113
114
iterNum = 0    
for star in cat:
    if iterNum%10000==0:
        print(iterNum)
Zhang Xin's avatar
Zhang Xin committed
115
    # if iterNum > 100:
Zhang Xin's avatar
Zhang Xin committed
116
117
    #     iterNum = iterNum + 1
    #     continue
Zhang Xin's avatar
init  
Zhang Xin committed
118
119
120
    if iterNum % rank_size != rank:
        iterNum = iterNum + 1
        continue
Zhang Xin's avatar
Zhang Xin committed
121
122
123
124
125
126
    # specTable = np.zeros([nwv,2])
    s=Star(star['mwmsc_logte'], star['mwmsc_logg'], star['mwmsc_mass'], star['mwmsc_av'], star['mwmsc_mu0'], star['mwmsc_z'])
    # av stellarmass dm teff logg feh
    # 0.0464   0.7512  10.8000   3.6914   4.5952   0.0122
    #  s=StarParm(obj.param['teff'], obj.param['logg'], obj.param['stellarMass'], obj.param['av'], obj.param['DM'], obj.param['feh'])
    # s=Star(3.6914, 4.5952, 0.7512, 0.0464, 10.8000, 0.0122) 
Zhang Xin's avatar
init  
Zhang Xin committed
127
128
    #print("star[logTe], star[logg], star[Mass], star[Av], star[mu0], star[Z]: ", star['logTe'], star['logg'], star['Mass'], star['Av'], star['mu0'], star['Z'])
    d.interpSingleStar(s, spec, wave)
Zhang Xin's avatar
Zhang Xin committed
129
130
131
132
133
134

    rv_c = star['mwmsc_vrad']/(atcons.c.value/1000.)
    Doppler_factor = np.sqrt((1+rv_c)/(1-rv_c))
    wave_RV = wave*Doppler_factor
    # specTable[:,0] = wave[:]
    # specTable[:,1] = spec[:]
Zhang Xin's avatar
init  
Zhang Xin committed
135
    # print(spec[500:509])
Zhang Xin's avatar
Zhang Xin committed
136
137
138
139
    spec_out = Table(np.array([wave_RV, np.power(10,spec[:])]).T, names=('WAVELENGTH', 'FLUX'))
    spec_norm_phot = produceSED.produceNormSED_photon(inputSED = spec_out,mag_norm = star['mwmsc_gsmag'], norm_filter_thr_fn= 'data/throughputs/SDSS/SLOAN_SDSS.g.fits',ws = 1050, we = 23950)
    # spec_norm_phot = produceSED.produceNormSED_photon(inputSED = spec_out,mag_norm = 17.8360, norm_filter_thr_fn= 'data/throughputs/SDSS/SLOAN_SDSS.g.fits',ws = 1000, we = 24000)
    mags = produceSED.calculatCSSTMAG(spec = spec_norm_phot, throughput_dir = 'data/throughputs/CSST_n/',ws= 2000, we = 11000)
Zhang Xin's avatar
init  
Zhang Xin committed
140

Zhang Xin's avatar
Zhang Xin committed
141
    mags_others = produceSED.calculatCSSTMAG(spec = spec_norm_phot, throughput_dir = 'data/throughputs/filter_transp/',ws= 1050, we = 23950, filelist=filters_other, band_instr='other')
Zhang Xin's avatar
init  
Zhang Xin committed
142
143
144
145
146

    for fi in filters:
        res[fi][iterNum] = mags[fi]
    for fi in filters_other:
        res[fi][iterNum] = mags_others[fi]
Zhang Xin's avatar
Zhang Xin committed
147
    parallaxs[iterNum] = 1/(10**(star['mwmsc_mu0']*0.2)/100)
Zhang Xin's avatar
init  
Zhang Xin committed
148
    iterNum = iterNum + 1
Zhang Xin's avatar
Zhang Xin committed
149
    # print(mags, mags_others)
Zhang Xin's avatar
Zhang Xin committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

# send_data1  = res
# send_data2 = parallaxs
# if rank == 0:
#     total_res = comm.gather(send_data1, root=0)
#     total_parall = comm.gather(send_data2, root=0)

#     for i in np.arange(1, rank_size, 1):
#         for fi in filters:
#             res[fi] = res[fi] + total_res[i][fi]
#         for fi in filters_other:
#             res[fi] = res[fi] + total_res[i][fi]
#         parallaxs = parallaxs + total_parall[i]
#     cat.add_column(np.round(parallaxs,5),name='parallax')
#     for fi in filters:
#         cat.add_column(np.round(res[fi],5),name='interSpec_'+fi)
#     for fi in filters_other:
#         cat.add_column(np.round(res[fi],5),name='interSpec_'+fi)
#     outdir = '/nfsdata/share/CSSOSDataProductsSims/trilegalCat/'
#     outFn = "C9_RA300_DECm60_refCat.fits"
#     cat.write(os.path.join(outdir,outFn),overwrite=True)

# else:
#     comm.gather(send_data1, root=0)
#     comm.gather(send_data2, root=0)
Zhang Xin's avatar
init  
Zhang Xin committed
175
176
177


total_res=comm.gather(res, root=0)
Zhang Xin's avatar
Zhang Xin committed
178
total_parall = comm.gather(parallaxs, root=0)
Zhang Xin's avatar
init  
Zhang Xin committed
179
180
181
182
183
184
185
186
187
188

if rank == 0:
    # new_res = res
    # total_res=comm.gather(res, root=0)
    # print("gather data size is ", size(total_res))
    for i in np.arange(1, rank_size, 1):
        for fi in filters:
            res[fi] = res[fi] + total_res[i][fi]
        for fi in filters_other:
            res[fi] = res[fi] + total_res[i][fi]
Zhang Xin's avatar
Zhang Xin committed
189
190
        parallaxs = parallaxs + total_parall[i]
    cat.add_column(np.round(parallaxs,5),name='parallax')
Zhang Xin's avatar
init  
Zhang Xin committed
191
192
193
194
    for fi in filters:
        cat.add_column(np.round(res[fi],5),name='interSpec_'+fi)
    for fi in filters_other:
        cat.add_column(np.round(res[fi],5),name='interSpec_'+fi)
Zhang Xin's avatar
Zhang Xin committed
195
196
    # outdir = '/nfsdata/share/CSSOSDataProductsSims/trilegalCat/'
    # outFn = "C9_RA240_DECp30_refCat_1.fits"
Zhang Xin's avatar
Zhang Xin committed
197
    cat.write(os.path.join(outdir,outFn),overwrite=True)
Zhang Xin's avatar
init  
Zhang Xin committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    # print('--------------------------')
    # print(mags['nuv']-star['mwmsc_nuvmag'], mags['u']-star['mwmsc_umag'], mags['g']-star['mwmsc_gmag'], mags['r']-star['mwmsc_rmag'], mags['i']-star['mwmsc_imag'],mags['z']-star['mwmsc_zmag'],mags['y']-star['mwmsc_ymag'])
#exmple of handling a fits catalouge with many stars
#wvs=fits.open('spec/fp00k2odfnew.fits')[2].data['wave'] #in Angstrom
# cat_list=np.loadtxt(topdir+'cat.list', dtype='U')
# for listfile in cat_list:
#     hdu = fits.open(topdir+listfile)
#     cat=hdu[1].data
#     for star in cat:
#         specTable = np.zeros([nwv,2])
#         s=Star(star['logTe'], star['logg'], star['Mass'], star['Av'], star['mu0'], star['Z'])
#         #print("star[logTe], star[logg], star[Mass], star[Av], star[mu0], star[Z]: ", star['logTe'], star['logg'], star['Mass'], star['Av'], star['mu0'], star['Z'])
#         d.interpSingleStar(s, spec, wave)
#         specTable[:,0] = wave[:]
#         specTable[:,1] = spec[:]
#         # print(spec[500:509])
#         spec_out = Table(np.array([wave[:], np.power(10,spec[:])]).T, names=('WAVELENGTH', 'FLUX'))
#         spec_norm_phot = produceSED.produceNormSED_photon(inputSED = spec_out,mag_norm = 24.0, norm_filter_thr_fn= 'data/throughputs/SDSS/SLOAN_SDSS.g.fits',ws = 2500, we = 10000)
#         mags = produceSED.calculatCSSTMAG(spec = spec_norm_phot, throughput_dir = 'data/throughputs/CSST/',ws= 2500, we = 10000)

#         # print("MAG is ",mags)
#         print('--------------------------')
#         print(mags['nuv']-star['mwmsc_nuvmag'], mag['u']-star['mwmsc_umag'], mag['g']-star['mwmsc_gmag'], mag['r']-star['mwmsc_rmag'], mag['i']-star['mwmsc_imag'],mag['z']-star['mwmsc_zmag'],mag['y']-star['mwmsc_ymag'])