_dispatcher.py 25.3 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
31
    "qc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
41
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
42
    "qc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
46
47
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
48
49
50
51
52
53
54
55
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
56

BO ZHANG's avatar
BO ZHANG committed
57
58
59
60
61
62
63
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
64
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
78
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
117
118
119
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
120
121


BO ZHANG's avatar
BO ZHANG committed
122
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
123
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
151
152
153
154
155
156
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
157
158
159
160
161
162
163
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
164
        print(f"Found {len(qr.data)} plan records.")
BO ZHANG's avatar
BO ZHANG committed
165
        # plan basis / obsid basis
166
167
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
168
169
                if _["instrument"] == "HSTDM":
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
170
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
171
                    else:
BO ZHANG's avatar
BO ZHANG committed
172
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
173
174
175
                else:
                    this_n_file = 1
                _["n_file"] = this_n_file
176
177
178
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
179
180
181
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
182
        )
BO ZHANG's avatar
BO ZHANG committed
183
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
184
185

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
186
187
188
189
190
191
192
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
193
        print(f"Found {len(qr.data)} level0 records.")
BO ZHANG's avatar
BO ZHANG committed
194
195
196
197
198
199
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
200

BO ZHANG's avatar
BO ZHANG committed
201
202
203
204
205
206
207
208
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
209
        print(f"Found {len(qr.data)} level1 records.")
BO ZHANG's avatar
BO ZHANG committed
210
211
212
213
214
215
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
216

217
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
218
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
219
220
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
221
222
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
223
224
225
226
227
228
229
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
230
        assert len(relevant_plan) > 0, relevant_plan
231
232
233
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
234
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
235
236
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
237
238
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
239
240
241
242
243
244
245
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
246
        assert len(relevant_plan) > 0, relevant_plan
247
248
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
249
250
251
252
253
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
254
255
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
256

BO ZHANG's avatar
BO ZHANG committed
257
258
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
259

260
        # sort data_basis before dispatching
261
        data_basis.sort(keys=data_basis.colnames)
262

263
        # loop over data
264
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
265
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
266
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
267
268
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
269
270
271
272
273
274
275
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
276
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
277
278
279
280
281
282
283
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
284
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
285
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
286
            )
287
288
289
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
290
291
292
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
293
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
294
295
296
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
297
298
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
299
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
300
301
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
302
303
                )
            )
BO ZHANG's avatar
BO ZHANG committed
304

BO ZHANG's avatar
BO ZHANG committed
305
        return task_list
BO ZHANG's avatar
BO ZHANG committed
306

BO ZHANG's avatar
BO ZHANG committed
307
308
309
310
311
312
313
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
314

BO ZHANG's avatar
BO ZHANG committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
338
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
339
340
341
342
343
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
344
345
346
347
348
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
349
350
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
351
        )
BO ZHANG's avatar
BO ZHANG committed
352
353
354
355
356

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
357
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
386
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
387
388
389
390
391
392
393
394
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
395

BO ZHANG's avatar
BO ZHANG committed
396
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
397
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
398
399
400
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
401
            n_file_found = len(this_data_detector_files)
402
403
404
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
405
406
407
408
409
410
411
412
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
413
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
414
415
416
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
417
418
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
419
420
421
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
422
                        else list(this_data_detector_files["_id_data"])
423
                    ),
BO ZHANG's avatar
BO ZHANG committed
424
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
425
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
450
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
451
452
453
454
455
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
456
457
458
459
460
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
461
            ]
BO ZHANG's avatar
BO ZHANG committed
462
463
        )

BO ZHANG's avatar
BO ZHANG committed
464
465
466
467
        # initialize task list
        task_list = []

        # loop over plan
468
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
469
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
470
471
472
473
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
474
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
496
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
497
498
499
500
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
501
502
            this_n_file = (
                this_data_obsid_plan["n_file"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
503
            )
BO ZHANG's avatar
BO ZHANG committed
504
505
506
507
508
509
510
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
511
                this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
512
513
514
515
516
517
518
519
520
521
522
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
523

BO ZHANG's avatar
BO ZHANG committed
524
            n_file_expected = int(this_data_obsid_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
525
            n_file_found = len(this_data_obsid_file)
526
527
528
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
529
530
531
532
533
534
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
535
536
537
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
538
539
540
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
541
                        else list(this_data_obsid_file["_id_data"])
542
                    ),
BO ZHANG's avatar
BO ZHANG committed
543
                    n_file_expected=this_data_obsid_plan["n_file"].sum(),
544
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
545
546
547
548
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
549

BO ZHANG's avatar
BO ZHANG committed
550
    @staticmethod
551
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
552
553
        plan_basis: table.Table,
        data_basis: table.Table,
554
        # n_jobs: int = 1,
BO ZHANG's avatar
BO ZHANG committed
555
    ):
556
557
558
        # unique obsgroup basis (using group_by)
        obsgroup_basis = plan_basis.group_by(
            keys=[
BO ZHANG's avatar
BO ZHANG committed
559
560
561
562
563
564
565
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        # initialize task list
        task_list = []

        # loop over obsgroup
        for i_obsgroup in trange(len(obsgroup_basis.groups), **TQDM_KWARGS):
            this_obsgroup_basis = obsgroup_basis.groups[i_obsgroup]
            this_obsgroup_obsid = this_obsgroup_basis["obs_id"].data
            n_file_expected = this_obsgroup_basis["n_file"].sum()

            this_instrument = this_obsgroup_basis["instrument"][0]
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
                    dataset=this_obsgroup_basis["dataset"][0],
                    instrument=this_obsgroup_basis["instrument"][0],
                    obs_type=this_obsgroup_basis["obs_type"][0],
                    obs_group=this_obsgroup_basis["obs_group"][0],
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
                            dataset=this_obsgroup_basis["dataset"][0],
                            instrument=this_obsgroup_basis["instrument"][0],
                            obs_type=this_obsgroup_basis["obs_type"][0],
                            obs_group=this_obsgroup_basis["obs_group"][0],
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
                        relevant_plan=this_obsgroup_basis,
                        relevant_data=this_obsgroup_detector_found,
                        n_relevant_plan=len(this_obsgroup_basis),
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
655

BO ZHANG's avatar
BO ZHANG committed
656
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
657
658
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
659
        # loop over obsgroup
660
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
661
662
663
664
665

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
666
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
667
668
669
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
670
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
671
672
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
673
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
674
675
676
677
678
679
680
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
681
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
682
683
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
684
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
685
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
686
687
688
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
689
690

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
691
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
692
693
694
695
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
696
                )
BO ZHANG's avatar
BO ZHANG committed
697

BO ZHANG's avatar
BO ZHANG committed
698
699
700
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
701
702
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
703
                else:
BO ZHANG's avatar
BO ZHANG committed
704
705
706
707
708
709
710
711
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
712
713
                    )

BO ZHANG's avatar
BO ZHANG committed
714
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
715
            n_file_found = len(this_obsgroup_file)
716
717
718
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
719
720
721
722
723
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
724
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
725
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
726
                    n_relevant_plan=len(this_obsgroup_plan),
727
                    n_relevant_data=len(this_obsgroup_file),
728
729
730
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
731
                        else list(this_obsgroup_file["_id_data"])
732
                    ),
BO ZHANG's avatar
BO ZHANG committed
733
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
734
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
735
736
737
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
738
739

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
740
741
742
743
744
745
746
747
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
748
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
749
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
750
751
752
753
754
755
756
757
758
759
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis