Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
92db78dd
Commit
92db78dd
authored
Jul 30, 2024
by
Fang Yuedong
Browse files
Merge branch 'develop' into milky_way_extinction
parents
dfb71c23
e603f8fd
Changes
9
Expand all
Hide whitespace changes
Inline
Side-by-side
observation_sim/ObservationSim.py
View file @
92db78dd
...
...
@@ -23,7 +23,7 @@ class Observation(object):
self
.
filter_param
=
FilterParam
()
self
.
Catalog
=
Catalog
def
prepare_chip_for_exposure
(
self
,
chip
,
ra_cen
,
dec_cen
,
pointing
,
wcs_fp
=
None
):
def
prepare_chip_for_exposure
(
self
,
chip
,
ra_cen
,
dec_cen
,
pointing
,
wcs_fp
=
None
,
slsPSFOptim
=
False
):
# Get WCS for the focal plane
if
wcs_fp
==
None
:
wcs_fp
=
self
.
focal_plane
.
getTanWCS
(
...
...
@@ -34,6 +34,26 @@ class Observation(object):
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
chip
.
img
.
wcs
=
wcs_fp
chip
.
slsPSFOptim
=
slsPSFOptim
if
chip
.
chipID
in
[
1
,
2
,
3
,
4
,
5
,
10
,
21
,
26
,
27
,
28
,
29
,
30
]
and
slsPSFOptim
:
chip
.
img_stack
=
{}
for
id1
in
np
.
arange
(
2
):
gn
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)[
id1
]
orders
=
{}
# for id2 in ['-2','-1','0','1','2']:
for
id2
in
[
'0'
,
'1'
]:
o_n
=
"order"
+
id2
allbands
=
{}
for
id3
in
[
'1'
,
'2'
,
'3'
,
'4'
]:
w_n
=
"w"
+
id3
allbands
[
w_n
]
=
galsim
.
ImageF
(
chip
.
npix_x
,
chip
.
npix_y
)
allbands
[
w_n
].
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
allbands
[
w_n
].
wcs
=
wcs_fp
orders
[
o_n
]
=
allbands
chip
.
img_stack
[
gn
]
=
orders
else
:
chip
.
img_stack
=
{}
# Get random generators for this chip
chip
.
rng_poisson
,
chip
.
poisson_noise
=
chip_utils
.
get_poisson
(
seed
=
int
(
self
.
config
[
"random_seeds"
][
"seed_poisson"
])
+
pointing
.
id
*
30
+
chip
.
chipID
,
sky_level
=
0.
)
...
...
@@ -97,9 +117,10 @@ class Observation(object):
ra_cen
=
pointing
.
ra
dec_cen
=
pointing
.
dec
ra_offset
,
dec_offset
=
0.
,
0.
slsPSFOpt
=
False
# Prepare necessary chip properties for simulation
chip
=
self
.
prepare_chip_for_exposure
(
chip
,
ra_cen
,
dec_cen
,
pointing
)
chip
=
self
.
prepare_chip_for_exposure
(
chip
,
ra_cen
,
dec_cen
,
pointing
,
slsPSFOptim
=
slsPSFOpt
)
# Initialize SimSteps
sim_steps
=
SimSteps
(
overall_config
=
self
.
config
,
...
...
observation_sim/mock_objects/Galaxy.py
View file @
92db78dd
...
...
@@ -323,28 +323,73 @@ class Galaxy(MockObject):
# # if fd_shear is not None:
# # gal = gal.shear(fd_shear)
starImg
=
gal
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
,
method
=
'real_space'
)
origin_star
=
[
y_nominal
-
(
starImg
.
center
.
y
-
starImg
.
ymin
),
x_nominal
-
(
starImg
.
center
.
x
-
starImg
.
xmin
)]
starImg
.
setOrigin
(
0
,
0
)
galImg_List
=
[]
try
:
pos_img_local
=
[
0
,
0
]
x_start
=
chip
.
x_cen
/
chip
.
pix_size
-
chip
.
npix_x
/
2.
y_start
=
chip
.
y_cen
/
chip
.
pix_size
-
chip
.
npix_y
/
2.
pos_img_local
[
0
]
=
pos_img
.
x
-
x_start
pos_img_local
[
1
]
=
pos_img
.
y
-
y_start
nnx
=
0
nny
=
0
for
order
in
[
"A"
,
"B"
]:
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
,
pos_img_local
=
pos_img_local
,
bandNo
=
i
+
1
,
galsimGSObject
=
True
,
g_order
=
order
,
grating_split_pos
=
grating_split_pos
)
star_p
=
galsim
.
Convolve
(
psf
,
gal
)
if
nnx
==
0
:
galImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
)
nnx
=
galImg
.
xmax
-
galImg
.
xmin
+
1
nny
=
galImg
.
ymax
-
galImg
.
ymin
+
1
else
:
galImg
=
star_p
.
drawImage
(
nx
=
nnx
,
ny
=
nny
,
wcs
=
chip_wcs_local
,
offset
=
offset
)
galImg
.
setOrigin
(
0
,
0
)
# n1 = np.sum(np.isinf(galImg.array))
# n2 = np.sum(np.isnan(galImg.array))
# if n1>0 or n2 > 0:
# print("DEBUG: Galaxy, inf:%d, nan:%d"%(n1, n2))
if
np
.
sum
(
np
.
isnan
(
galImg
.
array
))
>
0
:
# ERROR happens
return
2
,
pos_shear
galImg_List
.
append
(
galImg
)
for
order
in
[
"C"
,
"D"
,
"E"
]:
galImg_List
.
append
(
galImg
)
except
:
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
=
chip
,
pos_img
=
pos_img
)
star_p
=
galsim
.
Convolve
(
psf
,
gal
)
galImg
=
star_p
.
drawImage
(
wcs
=
chip_wcs_local
,
offset
=
offset
)
galImg
.
setOrigin
(
0
,
0
)
if
np
.
sum
(
np
.
isnan
(
galImg
.
array
))
>
0
:
# ERROR happens
return
2
,
pos_shear
for
order
in
[
"A"
,
"B"
,
"C"
,
"D"
,
"E"
]:
galImg_List
.
append
(
galImg
)
# starImg = gal.drawImage(
# wcs=chip_wcs_local, offset=offset, method='real_space')
origin_star
=
[
y_nominal
-
(
galImg
.
center
.
y
-
galImg
.
ymin
),
x_nominal
-
(
galImg
.
center
.
x
-
galImg
.
xmin
)]
galImg
.
setOrigin
(
0
,
0
)
gal_origin
=
[
origin_star
[
0
],
origin_star
[
1
]]
gal_end
=
[
origin_star
[
0
]
+
star
Img
.
array
.
shape
[
0
]
-
1
,
origin_star
[
1
]
+
star
Img
.
array
.
shape
[
1
]
-
1
]
gal_end
=
[
origin_star
[
0
]
+
gal
Img
.
array
.
shape
[
0
]
-
1
,
origin_star
[
1
]
+
gal
Img
.
array
.
shape
[
1
]
-
1
]
if
gal_origin
[
1
]
<
grating_split_pos_chip
<
gal_end
[
1
]:
subSlitPos
=
int
(
grating_split_pos_chip
-
gal_origin
[
1
]
+
1
)
# part img disperse
subImg_p1
=
starImg
.
array
[:,
0
:
subSlitPos
]
star_p1
=
galsim
.
Image
(
subImg_p1
)
star_p1
.
setOrigin
(
0
,
0
)
star_p1s
=
[]
for
galImg
in
galImg_List
:
subImg_p1
=
galImg
.
array
[:,
0
:
subSlitPos
]
star_p1
=
galsim
.
Image
(
subImg_p1
)
star_p1
.
setOrigin
(
0
,
0
)
star_p1s
.
append
(
star_p1
)
origin_p1
=
origin_star
xcenter_p1
=
min
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p1
=
y_nominal
-
0
sdp_p1
=
SpecDisperser
(
orig_img
=
star_p1
,
xcenter
=
xcenter_p1
,
sdp_p1
=
SpecDisperser
(
orig_img
=
star_p1
s
,
xcenter
=
xcenter_p1
,
ycenter
=
ycenter_p1
,
origin
=
origin_p1
,
tar_spec
=
normalSED
,
band_start
=
brange
[
0
],
band_end
=
brange
[
1
],
...
...
@@ -352,21 +397,25 @@ class Galaxy(MockObject):
isAlongY
=
0
,
flat_cube
=
flat_cube
)
# self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear
=
self
.
addSLStoChipImageWithPSF
(
sdp
=
sdp_p1
,
chip
=
chip
,
pos_img_local
=
[
xcenter_p1
,
ycenter_p1
],
psf_model
=
psf_model
,
bandNo
=
i
+
1
,
grating_split_pos
=
grating_split_pos
,
local_wcs
=
chip_wcs_local
,
pos_img
=
pos_img
)
self
.
addSLStoChipImage
(
sdp
=
sdp_p1
,
chip
=
chip
,
xOrderSigPlus
=
xOrderSigPlus
,
local_wcs
=
chip_wcs_local
)
# pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
# psf_model=psf_model, bandNo=i + 1,
# grating_split_pos=grating_split_pos,
# local_wcs=chip_wcs_local, pos_img=pos_img)
star_p2s
=
[]
for
galImg
in
galImg_List
:
subImg_p2
=
starImg
.
array
[:,
subSlitPos
+
1
:
starImg
.
array
.
shape
[
1
]]
star_p2
=
galsim
.
Image
(
subImg_p2
)
star_p2
.
setOrigin
(
0
,
0
)
subImg_p2
=
galImg
.
array
[:,
subSlitPos
+
1
:
galImg
.
array
.
shape
[
1
]]
star_p2
=
galsim
.
Image
(
subImg_p2
)
star_p2
.
setOrigin
(
0
,
0
)
star_p2s
.
append
(
star_p2
)
origin_p2
=
[
origin_star
[
0
],
grating_split_pos_chip
]
xcenter_p2
=
max
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p2
=
y_nominal
-
0
sdp_p2
=
SpecDisperser
(
orig_img
=
star_p2
,
xcenter
=
xcenter_p2
,
sdp_p2
=
SpecDisperser
(
orig_img
=
star_p2
s
,
xcenter
=
xcenter_p2
,
ycenter
=
ycenter_p2
,
origin
=
origin_p2
,
tar_spec
=
normalSED
,
band_start
=
brange
[
0
],
band_end
=
brange
[
1
],
...
...
@@ -374,41 +423,41 @@ class Galaxy(MockObject):
isAlongY
=
0
,
flat_cube
=
flat_cube
)
#
self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear
=
self
.
addSLStoChipImageWithPSF
(
sdp
=
sdp_p2
,
chip
=
chip
,
pos_img_local
=
[
xcenter_p2
,
ycenter_p2
],
psf_model
=
psf_model
,
bandNo
=
i
+
1
,
grating_split_pos
=
grating_split_pos
,
local_wcs
=
chip_wcs_local
,
pos_img
=
pos_img
)
self
.
addSLStoChipImage
(
sdp
=
sdp_p2
,
chip
=
chip
,
xOrderSigPlus
=
xOrderSigPlus
,
local_wcs
=
chip_wcs_local
)
#
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
#
psf_model=psf_model, bandNo=i + 1,
#
grating_split_pos=grating_split_pos,
#
local_wcs=chip_wcs_local, pos_img=pos_img)
del
sdp_p1
del
sdp_p2
elif
grating_split_pos_chip
<=
gal_origin
[
1
]:
sdp
=
SpecDisperser
(
orig_img
=
starImg
,
xcenter
=
x_nominal
-
0
,
sdp
=
SpecDisperser
(
orig_img
=
galImg_List
,
xcenter
=
x_nominal
-
0
,
ycenter
=
y_nominal
-
0
,
origin
=
origin_star
,
tar_spec
=
normalSED
,
band_start
=
brange
[
0
],
band_end
=
brange
[
1
],
conf
=
chip
.
sls_conf
[
1
],
isAlongY
=
0
,
flat_cube
=
flat_cube
)
#
self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear
=
self
.
addSLStoChipImageWithPSF
(
sdp
=
sdp
,
chip
=
chip
,
pos_img_local
=
[
x_nominal
,
y_nominal
],
psf_model
=
psf_model
,
bandNo
=
i
+
1
,
grating_split_pos
=
grating_split_pos
,
local_wcs
=
chip_wcs_local
,
pos_img
=
pos_img
)
self
.
addSLStoChipImage
(
sdp
=
sdp
,
chip
=
chip
,
xOrderSigPlus
=
xOrderSigPlus
,
local_wcs
=
chip_wcs_local
)
#
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
#
psf_model=psf_model, bandNo=i + 1,
#
grating_split_pos=grating_split_pos,
#
local_wcs=chip_wcs_local, pos_img=pos_img)
del
sdp
elif
grating_split_pos_chip
>=
gal_end
[
1
]:
sdp
=
SpecDisperser
(
orig_img
=
starImg
,
xcenter
=
x_nominal
-
0
,
sdp
=
SpecDisperser
(
orig_img
=
galImg_List
,
xcenter
=
x_nominal
-
0
,
ycenter
=
y_nominal
-
0
,
origin
=
origin_star
,
tar_spec
=
normalSED
,
band_start
=
brange
[
0
],
band_end
=
brange
[
1
],
conf
=
chip
.
sls_conf
[
0
],
isAlongY
=
0
,
flat_cube
=
flat_cube
)
#
self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear
=
self
.
addSLStoChipImageWithPSF
(
sdp
=
sdp
,
chip
=
chip
,
pos_img_local
=
[
x_nominal
,
y_nominal
],
psf_model
=
psf_model
,
bandNo
=
i
+
1
,
grating_split_pos
=
grating_split_pos
,
local_wcs
=
chip_wcs_local
,
pos_img
=
pos_img
)
self
.
addSLStoChipImage
(
sdp
=
sdp
,
chip
=
chip
,
xOrderSigPlus
=
xOrderSigPlus
,
local_wcs
=
chip_wcs_local
)
#
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
#
psf_model=psf_model, bandNo=i + 1,
#
grating_split_pos=grating_split_pos,
#
local_wcs=chip_wcs_local, pos_img=pos_img)
del
sdp
# print(self.y_nominal, starImg.center.y, starImg.ymin)
...
...
observation_sim/mock_objects/MockObject.py
View file @
92db78dd
This diff is collapsed.
Click to expand it.
observation_sim/mock_objects/SpecDisperser/SpecDisperser.py
View file @
92db78dd
...
...
@@ -65,10 +65,30 @@ class SpecDisperser(object):
# self.img_x = orig_img.shape[1]
# self.img_y = orig_img.shape[0]
self
.
thumb_img
=
np
.
abs
(
orig_img
.
array
)
self
.
thumb_x
=
orig_img
.
center
.
x
self
.
thumb_y
=
orig_img
.
center
.
y
self
.
img_sh
=
orig_img
.
array
.
shape
# 5 orders, A, B ,
orderName
=
[
"A"
,
"B"
,
"C"
,
"D"
,
"E"
]
self
.
orig_img_orders
=
OrderedDict
()
if
isinstance
(
orig_img
,
list
):
orig_img_list
=
orig_img
list_len
=
len
(
orig_img_list
)
if
list_len
<
5
:
for
i
in
np
.
arange
(
5
-
list_len
):
orig_img_list
.
append
(
orig_img_list
[
list_len
-
1
])
for
i
,
k
in
enumerate
(
orig_img_list
):
self
.
orig_img_orders
[
orderName
[
i
]]
=
k
if
isinstance
(
orig_img
,
galsim
.
Image
):
for
i
in
np
.
arange
(
5
):
self
.
orig_img_orders
[
orderName
[
i
]]
=
orig_img
orig_img_one
=
self
.
orig_img_orders
[
"A"
]
self
.
thumb_img
=
np
.
abs
(
orig_img_one
.
array
)
self
.
thumb_x
=
orig_img_one
.
center
.
x
self
.
thumb_y
=
orig_img_one
.
center
.
y
self
.
img_sh
=
orig_img_one
.
array
.
shape
self
.
id
=
gid
...
...
@@ -78,10 +98,13 @@ class SpecDisperser(object):
self
.
isAlongY
=
isAlongY
self
.
flat_cube
=
flat_cube
if
self
.
isAlongY
==
1
:
self
.
thumb_img
,
self
.
thumb_x
,
self
.
thumb_y
=
rotate90
(
array_orig
=
self
.
thumb_img
,
xc
=
orig_img
.
center
.
x
,
yc
=
orig_img
.
center
.
y
,
isClockwise
=
1
)
for
order
in
orderName
:
self
.
orig_img_orders
[
order
],
self
.
thumb_x
,
self
.
thumb_y
=
rotate90
(
array_orig
=
self
.
orig_img_orders
[
order
],
xc
=
orig_img_one
.
center
.
x
,
yc
=
orig_img_one
.
center
.
y
,
isClockwise
=
1
)
# self.thumb_img, self.thumb_x, self.thumb_y = rotate90(array_orig=self.thumb_img, xc=orig_img_one.center.x,
# yc=orig_img_one.center.y, isClockwise=1)
self
.
img_sh
=
orig_img
.
array
.
T
.
shape
self
.
img_sh
=
self
.
orig_img
_orders
[
order
]
.
array
.
T
.
shape
self
.
xcenter
=
ycenter
self
.
ycenter
=
xcenter
...
...
@@ -111,10 +134,16 @@ class SpecDisperser(object):
def
compute_spec
(
self
,
beam
):
# if beam == "B":
# return self.thumb_img, self.origin[1], self.origin[0], None, None, None
from
.disperse_c
import
interp
from
.disperse_c
import
disperse
# from MockObject.disperse_c import disperse
self
.
thumb_img
=
np
.
abs
(
self
.
orig_img_orders
[
beam
].
array
)
self
.
thumb_x
=
self
.
orig_img_orders
[
beam
].
center
.
x
self
.
thumb_y
=
self
.
orig_img_orders
[
beam
].
center
.
y
self
.
img_sh
=
self
.
orig_img_orders
[
beam
].
array
.
shape
dx
=
self
.
grating_conf
.
dxlam
[
beam
]
xoff
=
0
ytrace_beam
,
lam_beam
=
self
.
grating_conf
.
get_beam_trace
(
x
=
self
.
xcenter
,
y
=
self
.
ycenter
,
dx
=
(
dx
+
xoff
),
...
...
@@ -169,7 +198,8 @@ class SpecDisperser(object):
dyc
=
cast
[
int
](
np
.
floor
(
ytrace_beam
+
0.5
))
dypix
=
cast
[
int
](
np
.
floor
(
ytrace_beam
-
dyc
[
0
]
+
x0
[
0
]
+
0.5
))
# dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5))
dypix
=
dyc
-
dyc
[
0
]
+
x0
[
0
]
frac_ids
=
yfrac_beam
<
0
...
...
@@ -248,7 +278,8 @@ class SpecDisperser(object):
# beam_flat[k] = self.flat_cube[:, originOut_y + i, originOut_x + j]
status
=
disperse
.
disperse_grism_object
(
self
.
thumb_img
.
astype
(
np
.
float32
),
flat_index
[
nonz
],
yfrac_beam
[
nonz
],
flat_index
[
nonz
],
yfrac_beam
[
nonz
],
sensitivity_beam
[
nonz
],
modelf
,
x0
,
array
(
self
.
img_sh
,
...
...
@@ -258,11 +289,24 @@ class SpecDisperser(object):
lam_beam
[
lam_index
][
nonz
])
model
=
modelf
.
reshape
(
beam_sh
)
# n1 = np.sum(np.isinf(model))
# n2 = np.sum(np.isnan(model))
# n3 = np.sum(np.isinf(modelf))
# n4 = np.sum(np.isnan(modelf))
# if n1>0 or n2 > 0:
# print("DEBUG: SpecDisperser, inf:%d, nan:%d--------%d,%d"%(n1, n2, n3, n4))
# print(dypix)
# n1 = np.sum(np.isinf(self.thumb_img.astype(np.float32)))
# n2 = np.sum(np.isnan(self.thumb_img.astype(np.float32)))
# n3 = np.sum(np.isinf(yfrac_beam))
# n4 = np.sum(np.isnan(yfrac_beam))
# n5 = np.sum(np.isinf(sensitivity_beam))
# n6 = np.sum(np.isnan(sensitivity_beam))
# print("DEBUG: SpecDisperser, innput ---inf:%d, nan:%d, yfrac_beam:%d/%d, sensitivity_beam:%d/%d"%(n1, n2, n3, n4, n5, n6))
self
.
beam_flux
[
beam
]
=
sum
(
modelf
)
if
self
.
isAlongY
==
1
:
model
,
_
,
_
=
rotate90
(
array_orig
=
model
,
isClockwise
=
0
)
return
model
,
originOut_x
,
originOut_y
,
dxpix
,
dypix
,
lam_beam
,
ysens
def
writerSensitivityFile
(
self
,
conffile
=
''
,
beam
=
''
,
w
=
None
,
sens
=
None
):
...
...
observation_sim/mock_objects/SpecDisperser/disperse_c/disperse.pyx
View file @
92db78dd
...
...
@@ -20,7 +20,30 @@ import cython
cdef
extern
from
"math.h"
:
double
sqrt
(
double
x
)
double
exp
(
double
x
)
def
check_nan2D
(
np
.
ndarray
[
FTYPE_t
,
ndim
=
2
]
arr
):
cdef
int
i
,
j
cdef
int
nrows
=
arr
.
shape
[
0
]
cdef
int
ncols
=
arr
.
shape
[
1
]
# 遍历数组的每个元素并检查是否存在 NaN
for
i
in
range
(
nrows
):
for
j
in
range
(
ncols
):
if
np
.
isnan
(
arr
[
i
,
j
])
|
np
.
isinf
(
arr
[
i
,
j
]):
return
True
return
False
def
check_nan1d
(
np
.
ndarray
[
DTYPE_t
,
ndim
=
1
]
arr
):
cdef
int
i
cdef
int
n
=
arr
.
shape
[
0
]
# 遍历数组的每个元素并检查是否存在 NaN
for
i
in
range
(
n
):
if
np
.
isnan
(
arr
[
i
])
|
np
.
isinf
(
arr
[
i
]):
return
True
return
False
@
cython
.
boundscheck
(
False
)
@
cython
.
wraparound
(
False
)
@
cython
.
embedsignature
(
True
)
...
...
@@ -53,6 +76,18 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
nk
=
len
(
idxl
)
nl
=
len
(
full
)
#if check_nan2D(flam):
# print("DEBUG: disperse, input Array 'flam' contains NaN.")
#if check_nan1d(ysens):
# print("DEBUG: disperse, input Array 'ysens' contains NaN.")
#if check_nan1d(yfrac):
# print("DEBUG: disperse, input Array 'yfrac' contains NaN.")
#if check_nan1d(full):
# print("DEBUG: disperse, input Array 'full' contains NaN before processing.")
if
(
flat
is
not
None
):
nlamb
=
len
(
wlambda
)
...
...
@@ -95,14 +130,15 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
else
:
for
i
in
range
(
0
-
x0
[
1
],
x0
[
1
]):
if
(
x0
[
1
]
+
i
<
0
)
|
(
x0
[
1
]
+
i
>=
shd
[
1
]):
x_pos
=
x0
[
1
]
+
i
if
(
x_pos
<
0
)
|
(
x_pos
>=
shd
[
1
]):
continue
for
j
in
range
(
0
-
x0
[
0
],
x0
[
0
]):
if
(
x0
[
0
]
+
j
<
0
)
|
(
x0
[
0
]
+
j
>=
shd
[
0
]):
y_pos
=
x0
[
0
]
+
j
if
(
y_pos
<
0
)
|
(
y_pos
>=
shd
[
0
]):
continue
fl_ij
=
flam
[
x0
[
0
]
+
j
,
x0
[
1
]
+
i
]
#/1.e-17
fl_ij
=
flam
[
y_pos
,
x_pos
]
#/1.e-17
if
(
fl_ij
==
0
):
continue
...
...
@@ -110,10 +146,13 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
k1
=
idxl
[
k
]
+
j
*
shg
[
1
]
+
i
if
(
k1
>=
0
)
&
(
k1
<
nl
):
full
[
k1
]
+=
ysens
[
k
]
*
fl_ij
*
(
1
-
yfrac
[
k
])
k2
=
idxl
[
k
]
+
(
j
+
1
)
*
shg
[
1
]
+
i
if
(
k2
>=
0
)
&
(
k2
<
nl
):
full
[
k2
]
+=
ysens
[
k
]
*
fl_ij
*
yfrac
[
k
]
#if (check_nan1d(full)):
# print("DEBUG: disperse, output Array 'full' contains NaN after processing.+++++++++++++++++++++++++++")
return
True
...
...
observation_sim/psf/PSFGauss.py
View file @
92db78dd
...
...
@@ -17,7 +17,7 @@ class PSFGauss(PSFModel):
self
.
fwhm
=
self
.
fwhmGauss
(
r
=
psfRa
)
self
.
sigGauss
=
psfRa
# 80% light radius
self
.
sigSpin
=
sigSpin
self
.
psf
=
galsim
.
Gaussian
(
flux
=
1.0
,
fwhm
=
fwhm
)
self
.
psf
=
galsim
.
Gaussian
(
flux
=
1.0
,
fwhm
=
self
.
fwhm
)
def
perfGauss
(
self
,
r
,
sig
):
"""
...
...
@@ -122,4 +122,4 @@ class PSFGauss(PSFModel):
# return ell, beta, qr
PSFshear
=
galsim
.
Shear
(
e
=
ell
,
beta
=
beta
*
galsim
.
radians
)
return
self
.
psf
.
shear
(
PSFshear
),
PSFshear
return
self
.
psf
.
shear
(
PSFshear
),
PSFshear
\ No newline at end of file
observation_sim/psf/PSFInterpSLS.py
View file @
92db78dd
...
...
@@ -20,8 +20,10 @@ import os
from
astropy.io
import
fits
from
astropy.modeling.models
import
Gaussian2D
from
scipy
import
signal
from
scipy
import
signal
,
interpolate
import
datetime
import
gc
from
jax
import
numpy
as
jnp
LOG_DEBUG
=
False
# ***#
NPSF
=
900
# ***# 30*30
...
...
@@ -433,7 +435,16 @@ class PSFInterpSLS(PSFModel):
# PSF_int_trans[ids_szero] = 0
# print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
PSF_int_trans
=
PSF_int_trans
/
np
.
sum
(
PSF_int_trans
)
###DEBGU
ids_szero
=
PSF_int_trans
<
0
n01
=
PSF_int_trans
[
ids_szero
].
shape
[
0
]
n1
=
np
.
sum
(
np
.
isinf
(
PSF_int_trans
))
n2
=
np
.
sum
(
np
.
isnan
(
PSF_int_trans
))
if
n1
>
0
or
n2
>
0
:
print
(
"DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d"
%
(
n1
,
n2
,
n01
))
####
# from astropy.io import fits
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
...
...
@@ -479,6 +490,215 @@ class PSFInterpSLS(PSFModel):
return
PSF_int_trans
,
PSF_int
def
get_PSF_AND_convolve_withsubImg
(
self
,
chip
,
cutImg
=
None
,
pos_img_local
=
[
1000
,
1000
],
bandNo
=
1
,
g_order
=
'A'
,
grating_split_pos
=
3685
):
"""
Get the PSF at a given image position
Parameters:
chip: A 'Chip' object representing the chip we want to extract PSF from.
pos_img: A 'galsim.Position' object representing the image position.
bandpass: A 'galsim.Bandpass' object representing the wavelength range.
pixSize: The pixels size of psf matrix
findNeighMode: 'treeFind' or 'hoclistFind'
Returns:
PSF: A 'galsim.GSObject'.
"""
order_IDs
=
{
'A'
:
'1'
,
'B'
:
'0'
,
'C'
:
'0'
,
'D'
:
'0'
,
'E'
:
'0'
}
contam_order_sigma
=
{
'C'
:
0.28032344707964174
,
'D'
:
0.39900182912061344
,
'E'
:
1.1988309797685412
}
# arcsec
x_start
=
chip
.
x_cen
/
chip
.
pix_size
-
chip
.
npix_x
/
2.
y_start
=
chip
.
y_cen
/
chip
.
pix_size
-
chip
.
npix_y
/
2.
# print(pos_img.x - x_start)
# pos_img_x = pos_img_local[0] + x_start
# pos_img_y = pos_img_local[1] + y_start
# pos_img = galsim.PositionD(pos_img_x, pos_img_y)
# centerPos_local = cutImg.ncol/2.
if
pos_img_local
[
0
]
<
grating_split_pos
:
psf_data
=
self
.
grating1_data
else
:
psf_data
=
self
.
grating2_data
grating_order
=
order_IDs
[
g_order
]
# if grating_order in ['-2','-1','2']:
# grating_order = '1'
# if grating_order in ['0', '1']:
psf_order
=
psf_data
[
'order'
+
grating_order
]
psf_order_b
=
psf_order
[
'band'
+
str
(
bandNo
)]
psf_b_dat
=
psf_order_b
[
'band_data'
]
# pos_p = psf_b_dat[1].data
pos_p
=
psf_b_dat
[
1
].
data
/
chip
.
pix_size
-
np
.
array
([
y_start
,
x_start
])
pc_coeff
=
psf_b_dat
[
2
].
data
pcs
=
psf_b_dat
[
0
].
data
npc
=
10
m_size
=
int
(
pcs
.
shape
[
0
]
**
0.5
)
sumImg
=
np
.
sum
(
cutImg
.
array
)
tmp_img
=
cutImg
*
0
for
j
in
np
.
arange
(
npc
):
X_
=
jnp
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
Z_
=
(
pc_coeff
[
j
].
astype
(
np
.
float32
)).
flatten
()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
cx_len
=
int
(
chip
.
npix_x
)
cy_len
=
int
(
chip
.
npix_y
)
n_x
=
jnp
.
arange
(
0
,
cx_len
,
1
,
dtype
=
int
)
n_y
=
jnp
.
arange
(
0
,
cy_len
,
1
,
dtype
=
int
)
M
,
N
=
jnp
.
meshgrid
(
n_x
,
n_y
)
# t1=datetime.datetime.now()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
b_img
=
galsim
.
Image
(
cx_len
,
cy_len
)
b_img
.
setOrigin
(
0
,
0
)
bounds
=
cutImg
.
bounds
&
b_img
.
bounds
if
bounds
.
area
()
==
0
:
continue
# ys = cutImg.ymin
# if ys < 0:
# ys = 0
# ye = cutImg.ymin+cutImg.nrow
# if ye >= cy_len-1:
# ye = cy_len-1
# if ye - ys <=0:
# continue
# xs = cutImg.xmin
# if xs < 0:
# xs = 0
# xe = cutImg.xmin+cutImg.ncol
# if xe >= cx_len-1:
# xe = cx_len-1
# if xe - xs <=0:
# continue
ys
=
bounds
.
ymin
ye
=
bounds
.
ymax
+
1
xs
=
bounds
.
xmin
xe
=
bounds
.
xmax
+
1
U
=
interpolate
.
griddata
(
X_
,
Z_
,
(
M
[
ys
:
ye
,
xs
:
xe
],
N
[
ys
:
ye
,
xs
:
xe
]),
method
=
'nearest'
,
fill_value
=
1.0
)
# t2=datetime.datetime.now()
# print("time interpolate:", t2-t1)
# if U.shape != cutImg.array.shape:
# print('DEBUG:SHAPE',cutImg.ncol,cutImg.nrow,cutImg.xmin, cutImg.ymin)
# continue
img_tmp
=
cutImg
img_tmp
[
bounds
]
=
img_tmp
[
bounds
]
*
U
psf
=
pcs
[:,
j
].
reshape
(
m_size
,
m_size
)
tmp_img
=
tmp_img
+
signal
.
fftconvolve
(
img_tmp
.
array
,
psf
,
mode
=
'same'
,
axes
=
None
)
# t3=datetime.datetime.now()
# print("time convole:", t3-t2)
del
U
del
img_tmp
if
np
.
sum
(
tmp_img
.
array
)
==
0
:
tmp_img
=
cutImg
else
:
tmp_img
=
tmp_img
/
np
.
sum
(
tmp_img
.
array
)
*
sumImg
return
tmp_img
def
convolveFullImgWithPCAPSF
(
self
,
chip
,
folding_threshold
=
5.e-3
):
keys_L1
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)
# keys_L2 = ['order-2','order-1','order0','order1','order2']
keys_L2
=
[
'order0'
,
'order1'
]
keys_L3
=
[
'w1'
,
'w2'
,
'w3'
,
'w4'
]
npca
=
10
x_start
=
chip
.
x_cen
/
chip
.
pix_size
-
chip
.
npix_x
/
2.
y_start
=
chip
.
y_cen
/
chip
.
pix_size
-
chip
.
npix_y
/
2.
for
i
,
gt
in
enumerate
(
keys_L1
):
psfCo
=
self
.
grating1_data
if
i
>
0
:
psfCo
=
self
.
grating2_data
for
od
in
keys_L2
:
psfCo_L2
=
psfCo
[
'order1'
]
if
od
in
[
'order-2'
,
'order-1'
,
'order0'
,
'order2'
]:
psfCo_L2
=
psfCo
[
'order0'
]
for
w
in
keys_L3
:
img
=
chip
.
img_stack
[
gt
][
od
][
w
]
pcs
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
0
].
data
pos_p
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
1
].
data
/
chip
.
pix_size
-
np
.
array
([
y_start
,
x_start
])
pc_coeff
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
2
].
data
# print("DEBUG-----------",np.max(pos_p[:,1]),np.min(pos_p[:,1]), np.max(pos_p[:,0]),np.min(pos_p[:,0]))
sum_img
=
np
.
sum
(
img
.
array
)
# coeff_mat = np.zeros([npca, chip.npix_y, chip.npix_x])
# for m in np.arange(chip.npix_y):
# for n in np.arange(chip.npix_x):
# px = n
# py = m
# dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
# temp_sort_dist = np.zeros([dist2.shape[0], 2])
# temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
# temp_sort_dist[:, 1] = dist2
# # print(temp_sort_dist)
# dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
# # print(dits2_sortlist)
# nearest4p = np.zeros([4, 3])
# pc_coeff_4p = np.zeros([npca, 4])
# for i in np.arange(4):
# smaller_ids = int(dits2_sortlist[i][0])
# nearest4p[i, 0] = pos_p[smaller_ids, 1]
# nearest4p[i, 1] = pos_p[smaller_ids, 0]
# # print(pos_p[smaller_ids, 1],pos_p[smaller_ids, 0])
# nearest4p[i, 2] = dits2_sortlist[i][1]
# pc_coeff_4p[:, i] = pc_coeff[npca, smaller_ids]
# # idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
# # py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))
# idw_dist = 1/(np.sqrt(nearest4p[:, 2]))
# coeff_int = np.zeros(npca)
# for i in np.arange(4):
# coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
# coeff_mat[:, m, n] = coeff_int
m_size
=
int
(
pcs
.
shape
[
0
]
**
0.5
)
tmp_img
=
np
.
zeros_like
(
img
.
array
,
dtype
=
np
.
float32
)
for
j
in
np
.
arange
(
npca
):
print
(
gt
,
od
,
w
,
j
)
X_
=
jnp
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
Z_
=
(
pc_coeff
[
j
].
astype
(
np
.
float32
)).
flatten
()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
sub_size
=
4
cx_len
=
int
(
chip
.
npix_x
/
sub_size
)
cy_len
=
int
(
chip
.
npix_y
/
sub_size
)
n_x
=
jnp
.
arange
(
0
,
chip
.
npix_x
,
sub_size
,
dtype
=
int
)
n_y
=
jnp
.
arange
(
0
,
chip
.
npix_y
,
sub_size
,
dtype
=
int
)
M
,
N
=
jnp
.
meshgrid
(
n_x
,
n_y
)
t1
=
datetime
.
datetime
.
now
()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
U1
=
interpolate
.
griddata
(
X_
,
Z_
,
(
M
,
N
),
method
=
'nearest'
,
fill_value
=
1.0
)
U
=
np
.
zeros_like
(
chip
.
img
.
array
,
dtype
=
np
.
float32
)
for
mi
in
np
.
arange
(
cy_len
):
for
mj
in
np
.
arange
(
cx_len
):
U
[
mi
*
sub_size
:(
mi
+
1
)
*
sub_size
,
mj
*
sub_size
:(
mj
+
1
)
*
sub_size
]
=
U1
[
mi
,
mj
]
t2
=
datetime
.
datetime
.
now
()
print
(
"time interpolate:"
,
t2
-
t1
)
img_tmp
=
img
.
array
*
U
psf
=
pcs
[:,
j
].
reshape
(
m_size
,
m_size
)
tmp_img
=
tmp_img
+
signal
.
fftconvolve
(
img_tmp
,
psf
,
mode
=
'same'
,
axes
=
None
)
t3
=
datetime
.
datetime
.
now
()
print
(
"time convole:"
,
t3
-
t2
)
del
U
del
U1
chip
.
img
=
chip
.
img
+
tmp_img
*
sum_img
/
np
.
sum
(
tmp_img
)
del
tmp_img
gc
.
collect
()
# pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize
#
# # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
...
...
observation_sim/sim_steps/add_objects.py
View file @
92db78dd
...
...
@@ -217,6 +217,26 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):
obj
.
unload_SED
()
del
obj
# gc.collect()
if
chip
.
survey_type
==
"spectroscopic"
and
not
self
.
overall_config
[
"run_option"
][
"out_cat_only"
]
and
chip
.
slsPSFOptim
:
# from observation_sim.instruments.chip import chip_utils as chip_utils
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
# img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])
# for id1 in np.arange(2):
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
# img_i = 0
# for id2 in ['0','1']:
# o_n = "order"+id2
# for id3 in ['1','2','3','4']:
# w_n = "w"+id3
# img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
# img_i = img_i + 1
# from astropy.io import fits
# fits.writeto('order0.fits',img1[0],overwrite=True)
# fits.writeto('order1.fits',img1[1],overwrite=True)
psf_model
.
convolveFullImgWithPCAPSF
(
chip
)
del
psf_model
gc
.
collect
()
...
...
tools/get_pointing_accurcy.py
→
tools/get_pointing_accur
a
cy.py
View file @
92db78dd
File moved
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment