Commit 92db78dd authored by Fang Yuedong's avatar Fang Yuedong
Browse files

Merge branch 'develop' into milky_way_extinction

parents dfb71c23 e603f8fd
...@@ -23,7 +23,7 @@ class Observation(object): ...@@ -23,7 +23,7 @@ class Observation(object):
self.filter_param = FilterParam() self.filter_param = FilterParam()
self.Catalog = Catalog self.Catalog = Catalog
def prepare_chip_for_exposure(self, chip, ra_cen, dec_cen, pointing, wcs_fp=None): def prepare_chip_for_exposure(self, chip, ra_cen, dec_cen, pointing, wcs_fp=None, slsPSFOptim = False):
# Get WCS for the focal plane # Get WCS for the focal plane
if wcs_fp == None: if wcs_fp == None:
wcs_fp = self.focal_plane.getTanWCS( wcs_fp = self.focal_plane.getTanWCS(
...@@ -34,6 +34,26 @@ class Observation(object): ...@@ -34,6 +34,26 @@ class Observation(object):
chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin) chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
chip.img.wcs = wcs_fp chip.img.wcs = wcs_fp
chip.slsPSFOptim = slsPSFOptim
if chip.chipID in [1,2,3,4,5,10,21,26,27,28,29,30] and slsPSFOptim:
chip.img_stack = {}
for id1 in np.arange(2):
gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
orders = {}
# for id2 in ['-2','-1','0','1','2']:
for id2 in ['0','1']:
o_n = "order"+id2
allbands = {}
for id3 in ['1','2','3','4']:
w_n = "w"+id3
allbands[w_n] = galsim.ImageF(chip.npix_x, chip.npix_y)
allbands[w_n].setOrigin(chip.bound.xmin, chip.bound.ymin)
allbands[w_n].wcs = wcs_fp
orders[o_n] = allbands
chip.img_stack[gn] = orders
else:
chip.img_stack = {}
# Get random generators for this chip # Get random generators for this chip
chip.rng_poisson, chip.poisson_noise = chip_utils.get_poisson( chip.rng_poisson, chip.poisson_noise = chip_utils.get_poisson(
seed=int(self.config["random_seeds"]["seed_poisson"]) + pointing.id*30 + chip.chipID, sky_level=0.) seed=int(self.config["random_seeds"]["seed_poisson"]) + pointing.id*30 + chip.chipID, sky_level=0.)
...@@ -97,9 +117,10 @@ class Observation(object): ...@@ -97,9 +117,10 @@ class Observation(object):
ra_cen = pointing.ra ra_cen = pointing.ra
dec_cen = pointing.dec dec_cen = pointing.dec
ra_offset, dec_offset = 0., 0. ra_offset, dec_offset = 0., 0.
slsPSFOpt = False
# Prepare necessary chip properties for simulation # Prepare necessary chip properties for simulation
chip = self.prepare_chip_for_exposure(chip, ra_cen, dec_cen, pointing) chip = self.prepare_chip_for_exposure(chip, ra_cen, dec_cen, pointing, slsPSFOptim = slsPSFOpt)
# Initialize SimSteps # Initialize SimSteps
sim_steps = SimSteps(overall_config=self.config, sim_steps = SimSteps(overall_config=self.config,
......
...@@ -323,28 +323,73 @@ class Galaxy(MockObject): ...@@ -323,28 +323,73 @@ class Galaxy(MockObject):
# # if fd_shear is not None: # # if fd_shear is not None:
# # gal = gal.shear(fd_shear) # # gal = gal.shear(fd_shear)
starImg = gal.drawImage( galImg_List = []
wcs=chip_wcs_local, offset=offset, method='real_space') try:
pos_img_local = [0,0]
origin_star = [y_nominal - (starImg.center.y - starImg.ymin), x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
x_nominal - (starImg.center.x - starImg.xmin)] y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
starImg.setOrigin(0, 0) pos_img_local[0] = pos_img.x - x_start
pos_img_local[1] = pos_img.y - y_start
nnx = 0
nny = 0
for order in ["A","B"]:
psf, pos_shear = psf_model.get_PSF(
chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos)
star_p = galsim.Convolve(psf, gal)
if nnx == 0:
galImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset)
nnx = galImg.xmax - galImg.xmin + 1
nny = galImg.ymax - galImg.ymin + 1
else:
galImg = star_p.drawImage(nx = nnx, ny = nny, wcs=chip_wcs_local, offset=offset)
galImg.setOrigin(0, 0)
# n1 = np.sum(np.isinf(galImg.array))
# n2 = np.sum(np.isnan(galImg.array))
# if n1>0 or n2 > 0:
# print("DEBUG: Galaxy, inf:%d, nan:%d"%(n1, n2))
if np.sum(np.isnan(galImg.array)) > 0:
# ERROR happens
return 2, pos_shear
galImg_List.append(galImg)
for order in ["C","D","E"]:
galImg_List.append(galImg)
except:
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)
star_p = galsim.Convolve(psf, gal)
galImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset)
galImg.setOrigin(0, 0)
if np.sum(np.isnan(galImg.array)) > 0:
# ERROR happens
return 2, pos_shear
for order in ["A","B","C","D","E"]:
galImg_List.append(galImg)
# starImg = gal.drawImage(
# wcs=chip_wcs_local, offset=offset, method='real_space')
origin_star = [y_nominal - (galImg.center.y - galImg.ymin),
x_nominal - (galImg.center.x - galImg.xmin)]
galImg.setOrigin(0, 0)
gal_origin = [origin_star[0], origin_star[1]] gal_origin = [origin_star[0], origin_star[1]]
gal_end = [origin_star[0] + starImg.array.shape[0] - gal_end = [origin_star[0] + galImg.array.shape[0] -
1, origin_star[1] + starImg.array.shape[1] - 1] 1, origin_star[1] + galImg.array.shape[1] - 1]
if gal_origin[1] < grating_split_pos_chip < gal_end[1]: if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1) subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
# part img disperse # part img disperse
subImg_p1 = starImg.array[:, 0:subSlitPos] star_p1s=[]
star_p1 = galsim.Image(subImg_p1) for galImg in galImg_List:
star_p1.setOrigin(0, 0)
subImg_p1 = galImg.array[:, 0:subSlitPos]
star_p1 = galsim.Image(subImg_p1)
star_p1.setOrigin(0, 0)
star_p1s.append(star_p1)
origin_p1 = origin_star origin_p1 = origin_star
xcenter_p1 = min(x_nominal, grating_split_pos_chip-1) - 0 xcenter_p1 = min(x_nominal, grating_split_pos_chip-1) - 0
ycenter_p1 = y_nominal-0 ycenter_p1 = y_nominal-0
sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1, sdp_p1 = SpecDisperser(orig_img=star_p1s, xcenter=xcenter_p1,
ycenter=ycenter_p1, origin=origin_p1, ycenter=ycenter_p1, origin=origin_p1,
tar_spec=normalSED, tar_spec=normalSED,
band_start=brange[0], band_end=brange[1], band_start=brange[0], band_end=brange[1],
...@@ -352,21 +397,25 @@ class Galaxy(MockObject): ...@@ -352,21 +397,25 @@ class Galaxy(MockObject):
isAlongY=0, isAlongY=0,
flat_cube=flat_cube) flat_cube=flat_cube)
# self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local) self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1], # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
psf_model=psf_model, bandNo=i + 1, # psf_model=psf_model, bandNo=i + 1,
grating_split_pos=grating_split_pos, # grating_split_pos=grating_split_pos,
local_wcs=chip_wcs_local, pos_img=pos_img) # local_wcs=chip_wcs_local, pos_img=pos_img)
star_p2s=[]
for galImg in galImg_List:
subImg_p2 = starImg.array[:, subImg_p2 = galImg.array[:,
subSlitPos+1:starImg.array.shape[1]] subSlitPos + 1:galImg.array.shape[1]]
star_p2 = galsim.Image(subImg_p2) star_p2 = galsim.Image(subImg_p2)
star_p2.setOrigin(0, 0) star_p2.setOrigin(0, 0)
star_p2s.append(star_p2)
origin_p2 = [origin_star[0], grating_split_pos_chip] origin_p2 = [origin_star[0], grating_split_pos_chip]
xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0 xcenter_p2 = max(x_nominal, grating_split_pos_chip - 1) - 0
ycenter_p2 = y_nominal - 0 ycenter_p2 = y_nominal - 0
sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2, sdp_p2 = SpecDisperser(orig_img=star_p2s, xcenter=xcenter_p2,
ycenter=ycenter_p2, origin=origin_p2, ycenter=ycenter_p2, origin=origin_p2,
tar_spec=normalSED, tar_spec=normalSED,
band_start=brange[0], band_end=brange[1], band_start=brange[0], band_end=brange[1],
...@@ -374,41 +423,41 @@ class Galaxy(MockObject): ...@@ -374,41 +423,41 @@ class Galaxy(MockObject):
isAlongY=0, isAlongY=0,
flat_cube=flat_cube) flat_cube=flat_cube)
# self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local) self.addSLStoChipImage(sdp=sdp_p2, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2], # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
psf_model=psf_model, bandNo=i + 1, # psf_model=psf_model, bandNo=i + 1,
grating_split_pos=grating_split_pos, # grating_split_pos=grating_split_pos,
local_wcs=chip_wcs_local, pos_img=pos_img) # local_wcs=chip_wcs_local, pos_img=pos_img)
del sdp_p1 del sdp_p1
del sdp_p2 del sdp_p2
elif grating_split_pos_chip <= gal_origin[1]: elif grating_split_pos_chip <= gal_origin[1]:
sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0, sdp = SpecDisperser(orig_img=galImg_List, xcenter=x_nominal - 0,
ycenter=y_nominal - 0, origin=origin_star, ycenter=y_nominal - 0, origin=origin_star,
tar_spec=normalSED, tar_spec=normalSED,
band_start=brange[0], band_end=brange[1], band_start=brange[0], band_end=brange[1],
conf=chip.sls_conf[1], conf=chip.sls_conf[1],
isAlongY=0, isAlongY=0,
flat_cube=flat_cube) flat_cube=flat_cube)
# self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local) self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal], # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
psf_model=psf_model, bandNo=i + 1, # psf_model=psf_model, bandNo=i + 1,
grating_split_pos=grating_split_pos, # grating_split_pos=grating_split_pos,
local_wcs=chip_wcs_local, pos_img=pos_img) # local_wcs=chip_wcs_local, pos_img=pos_img)
del sdp del sdp
elif grating_split_pos_chip >= gal_end[1]: elif grating_split_pos_chip >= gal_end[1]:
sdp = SpecDisperser(orig_img=starImg, xcenter=x_nominal - 0, sdp = SpecDisperser(orig_img=galImg_List, xcenter=x_nominal - 0,
ycenter=y_nominal - 0, origin=origin_star, ycenter=y_nominal - 0, origin=origin_star,
tar_spec=normalSED, tar_spec=normalSED,
band_start=brange[0], band_end=brange[1], band_start=brange[0], band_end=brange[1],
conf=chip.sls_conf[0], conf=chip.sls_conf[0],
isAlongY=0, isAlongY=0,
flat_cube=flat_cube) flat_cube=flat_cube)
# self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local) self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus, local_wcs=chip_wcs_local)
pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal], # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
psf_model=psf_model, bandNo=i + 1, # psf_model=psf_model, bandNo=i + 1,
grating_split_pos=grating_split_pos, # grating_split_pos=grating_split_pos,
local_wcs=chip_wcs_local, pos_img=pos_img) # local_wcs=chip_wcs_local, pos_img=pos_img)
del sdp del sdp
# print(self.y_nominal, starImg.center.y, starImg.ymin) # print(self.y_nominal, starImg.center.y, starImg.ymin)
......
This diff is collapsed.
...@@ -65,10 +65,30 @@ class SpecDisperser(object): ...@@ -65,10 +65,30 @@ class SpecDisperser(object):
# self.img_x = orig_img.shape[1] # self.img_x = orig_img.shape[1]
# self.img_y = orig_img.shape[0] # self.img_y = orig_img.shape[0]
self.thumb_img = np.abs(orig_img.array) # 5 orders, A, B ,
self.thumb_x = orig_img.center.x orderName=["A","B","C","D","E"]
self.thumb_y = orig_img.center.y self.orig_img_orders = OrderedDict()
self.img_sh = orig_img.array.shape if isinstance(orig_img, list):
orig_img_list = orig_img
list_len = len(orig_img_list)
if list_len < 5:
for i in np.arange(5-list_len):
orig_img_list.append(orig_img_list[list_len-1])
for i, k in enumerate(orig_img_list):
self.orig_img_orders[orderName[i]] = k
if isinstance(orig_img, galsim.Image):
for i in np.arange(5):
self.orig_img_orders[orderName[i]] = orig_img
orig_img_one = self.orig_img_orders["A"]
self.thumb_img = np.abs(orig_img_one.array)
self.thumb_x = orig_img_one.center.x
self.thumb_y = orig_img_one.center.y
self.img_sh = orig_img_one.array.shape
self.id = gid self.id = gid
...@@ -78,10 +98,13 @@ class SpecDisperser(object): ...@@ -78,10 +98,13 @@ class SpecDisperser(object):
self.isAlongY = isAlongY self.isAlongY = isAlongY
self.flat_cube = flat_cube self.flat_cube = flat_cube
if self.isAlongY == 1: if self.isAlongY == 1:
self.thumb_img, self.thumb_x, self.thumb_y = rotate90(array_orig=self.thumb_img, xc=orig_img.center.x, for order in orderName:
yc=orig_img.center.y, isClockwise=1) self.orig_img_orders[order], self.thumb_x, self.thumb_y = rotate90(array_orig=self.orig_img_orders[order], xc=orig_img_one.center.x,
yc=orig_img_one.center.y, isClockwise=1)
# self.thumb_img, self.thumb_x, self.thumb_y = rotate90(array_orig=self.thumb_img, xc=orig_img_one.center.x,
# yc=orig_img_one.center.y, isClockwise=1)
self.img_sh = orig_img.array.T.shape self.img_sh = self.orig_img_orders[order].array.T.shape
self.xcenter = ycenter self.xcenter = ycenter
self.ycenter = xcenter self.ycenter = xcenter
...@@ -111,10 +134,16 @@ class SpecDisperser(object): ...@@ -111,10 +134,16 @@ class SpecDisperser(object):
def compute_spec(self, beam): def compute_spec(self, beam):
# if beam == "B":
# return self.thumb_img, self.origin[1], self.origin[0], None, None, None
from .disperse_c import interp from .disperse_c import interp
from .disperse_c import disperse from .disperse_c import disperse
# from MockObject.disperse_c import disperse # from MockObject.disperse_c import disperse
self.thumb_img = np.abs(self.orig_img_orders[beam].array)
self.thumb_x = self.orig_img_orders[beam].center.x
self.thumb_y = self.orig_img_orders[beam].center.y
self.img_sh = self.orig_img_orders[beam].array.shape
dx = self.grating_conf.dxlam[beam] dx = self.grating_conf.dxlam[beam]
xoff = 0 xoff = 0
ytrace_beam, lam_beam = self.grating_conf.get_beam_trace(x=self.xcenter, y=self.ycenter, dx=(dx + xoff), ytrace_beam, lam_beam = self.grating_conf.get_beam_trace(x=self.xcenter, y=self.ycenter, dx=(dx + xoff),
...@@ -169,7 +198,8 @@ class SpecDisperser(object): ...@@ -169,7 +198,8 @@ class SpecDisperser(object):
dyc = cast[int](np.floor(ytrace_beam+0.5)) dyc = cast[int](np.floor(ytrace_beam+0.5))
dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5)) # dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5))
dypix = dyc - dyc[0] + x0[0]
frac_ids = yfrac_beam < 0 frac_ids = yfrac_beam < 0
...@@ -248,7 +278,8 @@ class SpecDisperser(object): ...@@ -248,7 +278,8 @@ class SpecDisperser(object):
# beam_flat[k] = self.flat_cube[:, originOut_y + i, originOut_x + j] # beam_flat[k] = self.flat_cube[:, originOut_y + i, originOut_x + j]
status = disperse.disperse_grism_object(self.thumb_img.astype(np.float32), status = disperse.disperse_grism_object(self.thumb_img.astype(np.float32),
flat_index[nonz], yfrac_beam[nonz], flat_index[nonz],
yfrac_beam[nonz],
sensitivity_beam[nonz], sensitivity_beam[nonz],
modelf, x0, modelf, x0,
array(self.img_sh, array(self.img_sh,
...@@ -258,11 +289,24 @@ class SpecDisperser(object): ...@@ -258,11 +289,24 @@ class SpecDisperser(object):
lam_beam[lam_index][nonz]) lam_beam[lam_index][nonz])
model = modelf.reshape(beam_sh) model = modelf.reshape(beam_sh)
# n1 = np.sum(np.isinf(model))
# n2 = np.sum(np.isnan(model))
# n3 = np.sum(np.isinf(modelf))
# n4 = np.sum(np.isnan(modelf))
# if n1>0 or n2 > 0:
# print("DEBUG: SpecDisperser, inf:%d, nan:%d--------%d,%d"%(n1, n2, n3, n4))
# print(dypix)
# n1 = np.sum(np.isinf(self.thumb_img.astype(np.float32)))
# n2 = np.sum(np.isnan(self.thumb_img.astype(np.float32)))
# n3 = np.sum(np.isinf(yfrac_beam))
# n4 = np.sum(np.isnan(yfrac_beam))
# n5 = np.sum(np.isinf(sensitivity_beam))
# n6 = np.sum(np.isnan(sensitivity_beam))
# print("DEBUG: SpecDisperser, innput ---inf:%d, nan:%d, yfrac_beam:%d/%d, sensitivity_beam:%d/%d"%(n1, n2, n3, n4, n5, n6))
self.beam_flux[beam] = sum(modelf) self.beam_flux[beam] = sum(modelf)
if self.isAlongY == 1: if self.isAlongY == 1:
model, _, _ = rotate90(array_orig=model, isClockwise=0) model, _, _ = rotate90(array_orig=model, isClockwise=0)
return model, originOut_x, originOut_y, dxpix, dypix, lam_beam, ysens return model, originOut_x, originOut_y, dxpix, dypix, lam_beam, ysens
def writerSensitivityFile(self, conffile='', beam='', w=None, sens=None): def writerSensitivityFile(self, conffile='', beam='', w=None, sens=None):
......
...@@ -20,7 +20,30 @@ import cython ...@@ -20,7 +20,30 @@ import cython
cdef extern from "math.h": cdef extern from "math.h":
double sqrt(double x) double sqrt(double x)
double exp(double x) double exp(double x)
def check_nan2D(np.ndarray[FTYPE_t, ndim=2] arr):
cdef int i, j
cdef int nrows = arr.shape[0]
cdef int ncols = arr.shape[1]
# 遍历数组的每个元素并检查是否存在 NaN
for i in range(nrows):
for j in range(ncols):
if np.isnan(arr[i, j]) | np.isinf(arr[i, j]):
return True
return False
def check_nan1d(np.ndarray[DTYPE_t, ndim=1] arr):
cdef int i
cdef int n = arr.shape[0]
# 遍历数组的每个元素并检查是否存在 NaN
for i in range(n):
if np.isnan(arr[i]) | np.isinf(arr[i]):
return True
return False
@cython.boundscheck(False) @cython.boundscheck(False)
@cython.wraparound(False) @cython.wraparound(False)
@cython.embedsignature(True) @cython.embedsignature(True)
...@@ -53,6 +76,18 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam, ...@@ -53,6 +76,18 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
nk = len(idxl) nk = len(idxl)
nl = len(full) nl = len(full)
#if check_nan2D(flam):
# print("DEBUG: disperse, input Array 'flam' contains NaN.")
#if check_nan1d(ysens):
# print("DEBUG: disperse, input Array 'ysens' contains NaN.")
#if check_nan1d(yfrac):
# print("DEBUG: disperse, input Array 'yfrac' contains NaN.")
#if check_nan1d(full):
# print("DEBUG: disperse, input Array 'full' contains NaN before processing.")
if (flat is not None): if (flat is not None):
nlamb = len(wlambda) nlamb = len(wlambda)
...@@ -95,14 +130,15 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam, ...@@ -95,14 +130,15 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
else: else:
for i in range(0-x0[1], x0[1]): for i in range(0-x0[1], x0[1]):
if (x0[1]+i < 0) | (x0[1]+i >= shd[1]): x_pos = x0[1]+i
if (x_pos < 0) | (x_pos >= shd[1]):
continue continue
for j in range(0-x0[0], x0[0]): for j in range(0-x0[0], x0[0]):
if (x0[0]+j < 0) | (x0[0]+j >= shd[0]): y_pos = x0[0]+j
if (y_pos < 0) | (y_pos >= shd[0]):
continue continue
fl_ij = flam[y_pos, x_pos] #/1.e-17
fl_ij = flam[x0[0]+j, x0[1]+i] #/1.e-17
if (fl_ij == 0): if (fl_ij == 0):
continue continue
...@@ -110,10 +146,13 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam, ...@@ -110,10 +146,13 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam,
k1 = idxl[k]+j*shg[1]+i k1 = idxl[k]+j*shg[1]+i
if (k1 >= 0) & (k1 < nl): if (k1 >= 0) & (k1 < nl):
full[k1] += ysens[k]*fl_ij*(1-yfrac[k]) full[k1] += ysens[k]*fl_ij*(1-yfrac[k])
k2 = idxl[k]+(j+1)*shg[1]+i k2 = idxl[k]+(j+1)*shg[1]+i
if (k2 >= 0) & (k2 < nl): if (k2 >= 0) & (k2 < nl):
full[k2] += ysens[k]*fl_ij*yfrac[k] full[k2] += ysens[k]*fl_ij*yfrac[k]
#if (check_nan1d(full)):
# print("DEBUG: disperse, output Array 'full' contains NaN after processing.+++++++++++++++++++++++++++")
return True return True
......
...@@ -17,7 +17,7 @@ class PSFGauss(PSFModel): ...@@ -17,7 +17,7 @@ class PSFGauss(PSFModel):
self.fwhm = self.fwhmGauss(r=psfRa) self.fwhm = self.fwhmGauss(r=psfRa)
self.sigGauss = psfRa # 80% light radius self.sigGauss = psfRa # 80% light radius
self.sigSpin = sigSpin self.sigSpin = sigSpin
self.psf = galsim.Gaussian(flux=1.0, fwhm=fwhm) self.psf = galsim.Gaussian(flux=1.0, fwhm=self.fwhm)
def perfGauss(self, r, sig): def perfGauss(self, r, sig):
""" """
...@@ -122,4 +122,4 @@ class PSFGauss(PSFModel): ...@@ -122,4 +122,4 @@ class PSFGauss(PSFModel):
# return ell, beta, qr # return ell, beta, qr
PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians) PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
return self.psf.shear(PSFshear), PSFshear return self.psf.shear(PSFshear), PSFshear
\ No newline at end of file
...@@ -20,8 +20,10 @@ import os ...@@ -20,8 +20,10 @@ import os
from astropy.io import fits from astropy.io import fits
from astropy.modeling.models import Gaussian2D from astropy.modeling.models import Gaussian2D
from scipy import signal from scipy import signal, interpolate
import datetime
import gc
from jax import numpy as jnp
LOG_DEBUG = False # ***# LOG_DEBUG = False # ***#
NPSF = 900 # ***# 30*30 NPSF = 900 # ***# 30*30
...@@ -433,7 +435,16 @@ class PSFInterpSLS(PSFModel): ...@@ -433,7 +435,16 @@ class PSFInterpSLS(PSFModel):
# PSF_int_trans[ids_szero] = 0 # PSF_int_trans[ids_szero] = 0
# print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape) # print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans) PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)
###DEBGU
ids_szero = PSF_int_trans<0
n01 = PSF_int_trans[ids_szero].shape[0]
n1 = np.sum(np.isinf(PSF_int_trans))
n2 = np.sum(np.isnan(PSF_int_trans))
if n1>0 or n2>0:
print("DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d"%(n1, n2, n01))
####
# from astropy.io import fits # from astropy.io import fits
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans) # fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
...@@ -479,6 +490,215 @@ class PSFInterpSLS(PSFModel): ...@@ -479,6 +490,215 @@ class PSFInterpSLS(PSFModel):
return PSF_int_trans, PSF_int return PSF_int_trans, PSF_int
def get_PSF_AND_convolve_withsubImg(self, chip, cutImg=None, pos_img_local=[1000, 1000], bandNo=1, g_order='A', grating_split_pos=3685):
"""
Get the PSF at a given image position
Parameters:
chip: A 'Chip' object representing the chip we want to extract PSF from.
pos_img: A 'galsim.Position' object representing the image position.
bandpass: A 'galsim.Bandpass' object representing the wavelength range.
pixSize: The pixels size of psf matrix
findNeighMode: 'treeFind' or 'hoclistFind'
Returns:
PSF: A 'galsim.GSObject'.
"""
order_IDs = {'A': '1', 'B': '0', 'C': '0', 'D': '0', 'E': '0'}
contam_order_sigma = {'C': 0.28032344707964174,
'D': 0.39900182912061344, 'E': 1.1988309797685412} # arcsec
x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
# print(pos_img.x - x_start)
# pos_img_x = pos_img_local[0] + x_start
# pos_img_y = pos_img_local[1] + y_start
# pos_img = galsim.PositionD(pos_img_x, pos_img_y)
# centerPos_local = cutImg.ncol/2.
if pos_img_local[0] < grating_split_pos:
psf_data = self.grating1_data
else:
psf_data = self.grating2_data
grating_order = order_IDs[g_order]
# if grating_order in ['-2','-1','2']:
# grating_order = '1'
# if grating_order in ['0', '1']:
psf_order = psf_data['order'+grating_order]
psf_order_b = psf_order['band'+str(bandNo)]
psf_b_dat = psf_order_b['band_data']
# pos_p = psf_b_dat[1].data
pos_p = psf_b_dat[1].data/chip.pix_size - np.array([y_start, x_start])
pc_coeff = psf_b_dat[2].data
pcs = psf_b_dat[0].data
npc = 10
m_size = int(pcs.shape[0]**0.5)
sumImg = np.sum(cutImg.array)
tmp_img = cutImg*0
for j in np.arange(npc):
X_ = jnp.hstack((pos_p[:,1].flatten()[:, None], pos_p[:,0].flatten()[:, None]),dtype=np.float32)
Z_ = (pc_coeff[j].astype(np.float32)).flatten()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
cx_len = int(chip.npix_x)
cy_len = int(chip.npix_y)
n_x = jnp.arange(0, cx_len, 1, dtype = int)
n_y = jnp.arange(0, cy_len, 1, dtype = int)
M, N = jnp.meshgrid(n_x, n_y)
# t1=datetime.datetime.now()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
b_img = galsim.Image(cx_len, cy_len)
b_img.setOrigin(0,0)
bounds = cutImg.bounds & b_img.bounds
if bounds.area() == 0:
continue
# ys = cutImg.ymin
# if ys < 0:
# ys = 0
# ye = cutImg.ymin+cutImg.nrow
# if ye >= cy_len-1:
# ye = cy_len-1
# if ye - ys <=0:
# continue
# xs = cutImg.xmin
# if xs < 0:
# xs = 0
# xe = cutImg.xmin+cutImg.ncol
# if xe >= cx_len-1:
# xe = cx_len-1
# if xe - xs <=0:
# continue
ys = bounds.ymin
ye = bounds.ymax+1
xs = bounds.xmin
xe = bounds.xmax+1
U = interpolate.griddata(X_, Z_, (M[ys:ye, xs:xe],N[ys:ye, xs:xe]),
method='nearest',fill_value=1.0)
# t2=datetime.datetime.now()
# print("time interpolate:", t2-t1)
# if U.shape != cutImg.array.shape:
# print('DEBUG:SHAPE',cutImg.ncol,cutImg.nrow,cutImg.xmin, cutImg.ymin)
# continue
img_tmp = cutImg
img_tmp[bounds] = img_tmp[bounds]*U
psf = pcs[:, j].reshape(m_size, m_size)
tmp_img = tmp_img + signal.fftconvolve(img_tmp.array, psf, mode='same', axes=None)
# t3=datetime.datetime.now()
# print("time convole:", t3-t2)
del U
del img_tmp
if np.sum(tmp_img.array)==0:
tmp_img = cutImg
else:
tmp_img = tmp_img/np.sum(tmp_img.array)*sumImg
return tmp_img
def convolveFullImgWithPCAPSF(self, chip, folding_threshold=5.e-3):
keys_L1= chip_utils.getChipSLSGratingID(chip.chipID)
# keys_L2 = ['order-2','order-1','order0','order1','order2']
keys_L2 = ['order0','order1']
keys_L3 = ['w1','w2','w3','w4']
npca = 10
x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
for i,gt in enumerate(keys_L1):
psfCo = self.grating1_data
if i > 0:
psfCo = self.grating2_data
for od in keys_L2:
psfCo_L2 = psfCo['order1']
if od in ['order-2','order-1','order0','order2']:
psfCo_L2 = psfCo['order0']
for w in keys_L3:
img = chip.img_stack[gt][od][w]
pcs = psfCo_L2['band'+w[1]]['band_data'][0].data
pos_p = psfCo_L2['band'+w[1]]['band_data'][1].data/chip.pix_size - np.array([y_start, x_start])
pc_coeff = psfCo_L2['band'+w[1]]['band_data'][2].data
# print("DEBUG-----------",np.max(pos_p[:,1]),np.min(pos_p[:,1]), np.max(pos_p[:,0]),np.min(pos_p[:,0]))
sum_img = np.sum(img.array)
# coeff_mat = np.zeros([npca, chip.npix_y, chip.npix_x])
# for m in np.arange(chip.npix_y):
# for n in np.arange(chip.npix_x):
# px = n
# py = m
# dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
# temp_sort_dist = np.zeros([dist2.shape[0], 2])
# temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
# temp_sort_dist[:, 1] = dist2
# # print(temp_sort_dist)
# dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
# # print(dits2_sortlist)
# nearest4p = np.zeros([4, 3])
# pc_coeff_4p = np.zeros([npca, 4])
# for i in np.arange(4):
# smaller_ids = int(dits2_sortlist[i][0])
# nearest4p[i, 0] = pos_p[smaller_ids, 1]
# nearest4p[i, 1] = pos_p[smaller_ids, 0]
# # print(pos_p[smaller_ids, 1],pos_p[smaller_ids, 0])
# nearest4p[i, 2] = dits2_sortlist[i][1]
# pc_coeff_4p[:, i] = pc_coeff[npca, smaller_ids]
# # idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
# # py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))
# idw_dist = 1/(np.sqrt(nearest4p[:, 2]))
# coeff_int = np.zeros(npca)
# for i in np.arange(4):
# coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
# coeff_mat[:, m, n] = coeff_int
m_size = int(pcs.shape[0]**0.5)
tmp_img = np.zeros_like(img.array,dtype=np.float32)
for j in np.arange(npca):
print(gt, od, w, j)
X_ = jnp.hstack((pos_p[:,1].flatten()[:, None], pos_p[:,0].flatten()[:, None]),dtype=np.float32)
Z_ = (pc_coeff[j].astype(np.float32)).flatten()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
sub_size = 4
cx_len = int(chip.npix_x/sub_size)
cy_len = int(chip.npix_y/sub_size)
n_x = jnp.arange(0, chip.npix_x, sub_size, dtype = int)
n_y = jnp.arange(0, chip.npix_y, sub_size, dtype = int)
M, N = jnp.meshgrid(n_x, n_y)
t1=datetime.datetime.now()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
U1 = interpolate.griddata(X_, Z_, (M, N),
method='nearest',fill_value=1.0)
U = np.zeros_like(chip.img.array, dtype=np.float32)
for mi in np.arange(cy_len):
for mj in np.arange(cx_len):
U[mi*sub_size:(mi+1)*sub_size, mj*sub_size:(mj+1)*sub_size]=U1[mi,mj]
t2=datetime.datetime.now()
print("time interpolate:", t2-t1)
img_tmp = img.array*U
psf = pcs[:, j].reshape(m_size, m_size)
tmp_img = tmp_img + signal.fftconvolve(img_tmp, psf, mode='same', axes=None)
t3=datetime.datetime.now()
print("time convole:", t3-t2)
del U
del U1
chip.img = chip.img + tmp_img*sum_img/np.sum(tmp_img)
del tmp_img
gc.collect()
# pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize # pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize
# #
# # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID' # # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
......
...@@ -217,6 +217,26 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param): ...@@ -217,6 +217,26 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):
obj.unload_SED() obj.unload_SED()
del obj del obj
# gc.collect() # gc.collect()
if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim:
# from observation_sim.instruments.chip import chip_utils as chip_utils
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
# img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])
# for id1 in np.arange(2):
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
# img_i = 0
# for id2 in ['0','1']:
# o_n = "order"+id2
# for id3 in ['1','2','3','4']:
# w_n = "w"+id3
# img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
# img_i = img_i + 1
# from astropy.io import fits
# fits.writeto('order0.fits',img1[0],overwrite=True)
# fits.writeto('order1.fits',img1[1],overwrite=True)
psf_model.convolveFullImgWithPCAPSF(chip)
del psf_model del psf_model
gc.collect() gc.collect()
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment