Grid.py 6.95 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import math
import numpy as np
import matplotlib.pyplot as plt

class BaseGrid(object):
    _valid_grid_types = ['RectGrid', 'HexGrid']
    _valid_mixed_types = ['MixedGrid']

class Grid(BaseGrid):
    def __init__(self, grid_spacing, wcs, Npix_x=10000, Npix_y=10000, pixelscale=0.074, rot_angle=None, pos_offset=None, angle_unit='rad'):
        self.grid_spacing = grid_spacing
        self.im_gs = grid_spacing * (1.0 / pixelscale) # pixels
        self.pixelscale = pixelscale
        self.Npix_x, self.Npix_y = Npix_x, Npix_y
        self.wcs = wcs
        self.rot_angle = rot_angle # rotation angle, in rad
        self.angle_unit = angle_unit
        if pos_offset:
            self.pos_offset = np.array(pos_offset)
        else:
            self.pos_offset = np.array([0., 0.])

        # May have to modify grid corners if there is a rotation
        if rot_angle:
            dx = Npix_x / 2.
            dy = Npix_y / 2.
            if angle_unit == 'deg':
                theta = np.deg2rad(rot_angle)
            else:
                theta = rot_angle
            self.startx = (0.-dx) * np.cos(theta) - (Npix_y-dy) * np.sin(theta) + dx
            self.endx = (Npix_x-dx) * np.cos(theta) - (0.-dy) * np.sin(theta) + dx
            self.starty = (0.-dx) * np.cos(theta) + (0.-dy) * np.sin(theta) + dx
            self.endy = (Npix_x-dx) * np.cos(theta) + (Npix_y-dy) * np.sin(theta) + dx
        else:
            self.startx, self.endx= 0., Npix_x
            self.starty, self.endy= 0., Npix_y

    def rotate_grid(self, theta, offset=None, angle_unit='rad'):

        if angle_unit == 'deg':
            theta = np.deg2rad(theta)
        elif angle_unit != 'rad':
            raise ValueError('`angle_unit` can only be `deg` or `rad`! ' +
                                  'Passed unit of {}'.format(angle_unit))

        if not offset: offset = [0., 0.]

        c, s = np.cos(theta), np.sin(theta)
        R = np.array(((c,-s), (s, c)))

        offset_grid = np.array([self.im_ra - offset[0], self.im_dec - offset[1]])
        translate = np.empty_like(offset_grid)
        translate[0,:] = offset[0]
        translate[1,:] = offset[1]

        rotated_grid = np.dot(R, offset_grid) + translate

        self.im_pos = rotated_grid.T
        self.im_ra, self.im_dec = self.im_pos[0,:], self.im_pos[1,:]

    def cut2buffer(self):
        '''
        Remove objects outside of tile (and buffer).
        We must sample points in the buffer zone in the beginning due to
        possible rotations.
        '''
        b = self.im_gs
        in_region = np.where( (self.im_pos[:,0]>b) & (self.im_pos[:,0]<self.Npix_x-b) &
                              (self.im_pos[:,1]>b) & (self.im_pos[:,1]<self.Npix_y-b) )
        self.im_pos = self.im_pos[in_region]
        self.im_ra = self.im_pos[:,0]
        self.im_dec = self.im_pos[:,1]

        # Get all image coordinate pairs
        self.pos = self.wcs.wcs_pix2world(self.im_pos, 1)
        self.ra = self.pos[:,0]
        self.dec = self.pos[:,1]

class RectGrid(Grid):
    def __init__(self, grid_spacing, wcs, Npix_x=10000, Npix_y=10000, pixelscale=0.074,
                 rot_angle=None, pos_offset=None, angle_unit='rad'):
        super(RectGrid, self).__init__(grid_spacing, wcs, Npix_x=Npix_x, Npix_y=Npix_y,
                                       pixelscale=pixelscale, rot_angle=rot_angle,
                                       pos_offset=pos_offset, angle_unit=angle_unit)
        self._create_grid()
    
    def _create_grid(self):
        im_gs = self.im_gs

        po = self.pos_offset
        im_po = po / self.pixelscale
        self.im_ra  = np.arange(self.startx, self.endx, im_gs)
        self.im_dec = np.arange(self.starty, self.endy, im_gs)

        # Get all image coordinate pairs
        self.im_pos = np.array(np.meshgrid(self.im_ra, self.im_dec)).T.reshape(
                -1, 2)
        self.im_ra  = self.im_pos[:,0]
        self.im_dec = self.im_pos[:,1]

        if self.rot_angle:
            self.rotate_grid(self.rot_angle, angle_unit=self.angle_unit,
                            offset=[(self.Npix_x+im_po[0])/2., (self.Npix_y+im_po[1])/2.])

        self.cut2buffer()

class HexGrid(Grid):
    def __init__(self, grid_spacing, wcs, Npix_x=10000, Npix_y=10000, pixelscale=0.074,
                 rot_angle=None, pos_offset=None, angle_unit='rad'):
        super(HexGrid, self).__init__(grid_spacing, wcs, Npix_x=Npix_x, Npix_y=Npix_y,
                                       pixelscale=pixelscale, rot_angle=rot_angle,
                                       pos_offset=pos_offset, angle_unit=angle_unit)
        self._create_grid()

    def _create_grid(self):
        im_gs = self.im_gs

        po = self.pos_offset
        im_po = [p / self.pixelscale for p in po]
        self.im_pos = HexGrid.calc_hex_coords(self.startx, self.starty, self.endx, self.endy, im_gs)
        self.im_ra = self.im_pos[:, 0]
        self.im_dec = self.im_pos[:, 1]

        if self.rot_angle:
            self.rotate_grid(self.rot_angle, angle_unit=self.angle_unit,
                            offset=[(self.Npix_x+im_po[0])/2., (self.Npix_y+im_po[1])/2.])
        self.cut2buffer()

    @classmethod
    def calc_hex_coords(cls, startx, starty, endx, endy, radius):
        # Geoemtric factors of given hexagon
        r = radius
        p = r * np.tan(np.pi / 6.) # side length / 2
        h = 4. * p
        dx = 2. * r
        dy = 2. * p

        row = 1

        xs = []
        ys = []

        while startx < endx:
            x = [startx, startx, startx + r, startx + dx, startx + dx, startx + r, startx + r]
            xs.append(x)
            startx += dx

        while starty < endy:
            y = [starty + p, starty + 3*p, starty + h, starty + 3*p, starty + p, starty, starty + dy]
            ys.append(y)
            starty += 2*p
            row += 1
        
        print(xs)
        print(ys)

        polygons = [zip(x, y) for x in xs for y in ys]
        polygons = [np.column_stack((x, y)) for x in xs for y in ys]
        # polygons = np.array(polygons)
        hexgrid = cls.polygons2coords(polygons)

        # Some hexagonal elements go beyond boundary; cut these out
        indx = np.where( (hexgrid[:,0]<endx) & (hexgrid[:,1]<endy) )
        return hexgrid[indx]

    @classmethod
    def polygons2coords(HexGrid, p):
        print(p)
        s = np.shape(p)
        print(s)
        L = s[0]*s[1]
        pp = np.array(p).reshape(L,2)
        c = np.vstack({tuple(row) for row in pp})
        # Some of the redundant coordinates are offset by ~1e-10 pixels
        return np.unique(c.round(decimals=6), axis=0)

def _build_grid(grid_type, **kwargs):
    if grid_type in GRID_TYPES:
        return GRID_TYPES[grid_type](**kwargs)
    else:
        raise ValueError('There is not yet an implemnted default Grid of type {}'.format(grid_type))

GRID_TYPES = {
    'RectGrid': RectGrid,
    'HexGrid': HexGrid
}