SingleEpochImage.py 7.58 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import copy
from astropy import wcs
from astropy.io import fits
import galsim

from ObservationSim.Instrument import Chip, Filter, FilterParam, FocalPlane, Telescope
from ObservationSim.PSF import PSFGauss, PSFInterp

class SingleEpochImage(object):
    
    def __init__(self, config, filepath):
        self.header0, self.header_img, self.img = self.read_initial_image(filepath)
        self._get_wcs(self.header_img)
        self._determine_unique_area(config)
        self.output_img_fname = config['output_img_name']

        if config['n_objects'] is not None:
            # Fixed number of objects per image
            self.objs_per_real = config['n_objects']
        elif config['object_density'] is not None:
            # Fixed number density of objects
            self.objs_per_real = round(self.u_area * config['object_density'])
        else:
            # Grid types: calculate nobjects later
            self.objs_per_real = None

        self.tel = Telescope()
        # Determine which CCD
        self.chip_ID = int(self.header0['DETECTOR'][-2:])
        # Determine epxosure time
        self.exp_time = float(self.header0['EXPTIME'])
        config["obs_setting"]={}
        config["obs_setting"]["exp_time"] = self.exp_time
        # Construnct Chip object
        self.chip = Chip(chipID=self.chip_ID, config=config)
        # Load PSF model
        if config["psf_setting"]["psf_model"] == "Gauss":
            self.psf_model = PSFGauss(chip=self.chip)
        elif config["psf_setting"]["psf_model"] == "Interp":
            self.psf_model = PSFInterp(chip=self.chip, PSF_data_file=config["psf_setting"]["psf_dir"])

        filter_id, filter_type = self.chip.getChipFilter()
        filter_param = FilterParam()
        self.filt = Filter(filter_id=filter_id,
                        filter_type=filter_type,
                        filter_param=filter_param)
        self.focal_plane = FocalPlane()
        
        self.setup_image_for_injection()

    def setup_image_for_injection(self):
        ra_cen = self.wcs.wcs.crval[0]
        dec_cen = self.wcs.wcs.crval[1]
        self.wcs_fp = self.focal_plane.getTanWCS(ra_cen, dec_cen, self.pos_ang*galsim.degrees, self.pixel_scale)
        # self.inj_img = galsim.ImageF(self.chip.npix_x, self.chip.npix_y)
        self.chip.img = galsim.Image(self.img, copy=True)
        self.chip.img.setOrigin(self.chip.bound.xmin, self.chip.bound.ymin)
        self.chip.img.wcs = self.wcs_fp
        print(self.chip.img.array)

    def read_initial_image(self, filepath):
        data = fits.open(filepath)
        header0 = data[0].header
        header1 = data[1].header
        image = fits.getdata(filepath)

        # (TEMP)
        image = np.float64(image)
        image *= 1.1
        image -= 500.

        temp_img = galsim.Image(image, copy=True)

        temp_img.array[temp_img.array > 65535] = 65535
        temp_img.replaceNegative(replace_value=0)
        temp_img.quantize()
        temp_img = galsim.Image(temp_img.array, dtype=np.uint16)
        # self.chip.img = galsim.Image(self.chip.img.array, dtype=np.int32)
        hdu1 = fits.PrimaryHDU(header=header0)
        hdu2 = fits.ImageHDU(temp_img.array, header=header1)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = "nullwt_image_for_injection.fits"
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)
        return header0, header1, image

    def _get_wcs(self, header):
        crpix1 = float(header['CRPIX1'])
        crpix2 = float(header['CRPIX2'])
        
        crval1 = float(header['CRVAL1'])
        crval2 = float(header['CRVAL2'])

        ctype1 = str(header['CTYPE1'])
        ctype2 = str(header['CTYPE2'])

        cd1_1 = float(header['CD1_1'])
        cd1_2 = float(header['CD1_2'])
        cd2_1 = float(header['CD2_1'])
        cd2_2 = float(header['CD2_2'])
        self.pos_ang = float(header['POS_ANG'])

        # Create WCS object
        self.wcs = wcs.WCS()
        self.wcs.wcs.crpix = [crpix1, crpix2]
        self.wcs.wcs.crval = [crval1, crval2]
        self.wcs.wcs.ctype = [ctype1, ctype2]
        self.wcs.wcs.cd = [[cd1_1, cd1_2], [cd2_1, cd2_2]]

        self.pixel_scale = 0.074
        self.Npix_x = int(header['NAXIS1'])
        self.Npix_y = int(header['NAXIS2'])

    def _determine_unique_area(self, config):
        coners = np.array([(1, 1), (1, self.Npix_y), (self.Npix_x, 1), (self.Npix_x, self.Npix_y)])
        coners = self.wcs.wcs_pix2world(coners, 1)
        ra_coners = coners[:, 0]
        dec_coners = coners[:, 1]
        self.ramin, self.ramax = min(ra_coners), max(ra_coners)
        self.decmin, self.decmax = min(dec_coners), max(dec_coners)

        if self.ramax - self.ramin > 1.:
            self.ra_boundary_cross = True
        else:
            self.ra_boundary_cross = False
        
        d1, d2 = np.deg2rad([self.decmin, self.decmax])
        r1, r2 = self.ramin, self.ramax

        if self.ra_boundary_cross:
            r2 = r2 + 360.
        
        # In deg^2
        a = (180. / np.pi) * (r2 - r1) * (np.sin(d2) - np.sin(d1))
        # Save in arcmin^2
        self.u_area = 3600. * a

    def inject_objects(self, pos, cat):
        nobj = len(pos)
        # Make sure we have enough objects to inject
        assert nobj <= len(cat.objs)
        
        for i in range(nobj):
            obj = cat.objs[i]
            try:
                sed_data = cat.load_sed(obj)
                norm_filt = cat.load_norm_filt(obj)
                obj.sed, obj.param["mag_%s"%self.filt.filter_type], obj.param["flux_%s"%self.filt.filter_type] = cat.convert_sed(
                        mag=obj.param["mag_use_normal"],
                        sed=sed_data,
                        target_filt=self.filt, 
                        norm_filt=norm_filt)
            except Exception as e:
                print(e)
                continue

            # Update object position to a point on grid
            obj.param['ra'], obj.param['dec'] = pos[i][0], pos[i][1]

            pos_img, offset, local_wcs = obj.getPosImg_Offset_WCS(img=self.chip.img)
            print(pos_img.x, pos_img.y)
            try:
                isUpdated, pos_shear = obj.drawObj_multiband(
                    tel=self.tel,
                    pos_img=pos_img, 
                    psf_model=self.psf_model, 
                    bandpass_list=self.filt.bandpass_sub_list,
                    filt=self.filt, 
                    chip=self.chip, 
                    g1=obj.g1, 
                    g2=obj.g2, 
                    exptime=self.exp_time)
                if isUpdated:
                    # TODO: add up stats
                    # print("updating output catalog...")
                    print('Updated')
                    pass
                else:
                    # print("object omitted", flush=True)
                    continue
            except Exception as e:
                print(e)
                pass
            # Unload SED:
            obj.unload_SED()
            del obj

    def save_injected_img(self):
        self.chip.img.array[self.chip.img.array > 65535] = 65535
        self.chip.img.replaceNegative(replace_value=0)
        self.chip.img.quantize()
        self.chip.img = galsim.Image(self.chip.img.array, dtype=np.uint16)
        # self.chip.img = galsim.Image(self.chip.img.array, dtype=np.int32)
        hdu1 = fits.PrimaryHDU(header=self.header0)
        hdu2 = fits.ImageHDU(self.chip.img.array, header=self.header_img)
        hdu1 = fits.HDUList([hdu1, hdu2])
        # fname = 'test_inject.fits'
        # fname = '20220621_test_injection.fits'
        fname = self.output_img_fname
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)