PSFGauss.py 3.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
5
6

from ObservationSim.PSF.PSFModel import PSFModel
Fang Yuedong's avatar
Fang Yuedong committed
7
8

class PSFGauss(PSFModel):
Fang Yuedong's avatar
Fang Yuedong committed
9
	def __init__(self, chip, fwhm=0.187, sigSpin=0., psfRa=None):
Fang Yuedong's avatar
Fang Yuedong committed
10
11
		self.pix_size = chip.pix_scale
		self.chip = chip
Fang Yuedong's avatar
Fang Yuedong committed
12
13
14
15
16
17
		if psfRa is None:
			self.fwhm = fwhm
			self.sigGauss = 0.15
		else:
			self.fwhm = self.fwhmGauss(r=psfRa)
			self.sigGauss = psfRa # 80% light radius
Fang Yuedong's avatar
Fang Yuedong committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
		self.sigSpin = sigSpin
		self.psf = galsim.Gaussian(flux=1.0,fwhm=fwhm)

	def perfGauss(self, r, sig):
		"""
		pseudo-error function, i.e. Cumulative distribution function of Gaussian distribution

		Parameter:
		r: radius
		sig: sigma of the Gaussian distribution

		Return:
		the value of the pseudo CDF
		"""
		gaussFun = lambda sigma, r: 1.0/(np.sqrt(2.0*np.pi)*sigma) * np.exp(-r**2/(2.0*sigma**2))
		nxx = 1000
		rArr = np.linspace(0.0,r,nxx)
		gauss = gaussFun(sig,rArr)
		erf = 2.0*np.trapz(gauss,rArr)
		return erf

	def fracGauss(self, sig, r=0.15, pscale=None):
		"""
		For a given Gaussian PSF with sigma=sig,
		derive the flux ratio ar the given radius r
		
		Parameters:
		sig: sigma of the Gauss PSF Function in arcsec
		r:   radius in arcsec
		pscale: pixel scale

		Return: the flux ratio
		"""
		if pscale == None:
			pscale = self.pix_size
		gaussx = galsim.Gaussian(flux=1.0,sigma=sig)
		gaussImg  = gaussx.drawImage(scale=pscale, method='no_pixel')
		gaussImg = gaussImg.array
		size = np.size(gaussImg,axis=0)
		cxy = 0.5*(size-1)
		flux, ferr, flag = sep.sum_circle(gaussImg,cxy,cxy,r/pscale,subpix=0)
		frac = flux.tolist()
		return frac

	def fwhmGauss(self, r=0.15,fr=0.8,pscale=None):
		"""
		Given a total flux ratio 'fr' within a fixed radius 'r',
		estimate the fwhm of the Gaussian function

		return the fwhm in arcsec
		"""
		if pscale == None:
			pscale = self.pix_size
		err = 1.0e-3
		nxx = 100
		sig = np.linspace(0.5*pscale,1.0,nxx)
		frA = np.zeros(nxx)
		for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
		index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]

		while abs(frA[index]-fr)>1.0e-3:
			sig = np.linspace(sig[index],sig[index+1],nxx)
			for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
			index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]

		fwhm = 2.35482*sig[index]
		return fwhm

	def get_PSF(self, pos_img, chip=None, bandpass=None, folding_threshold=5.e-3):
		dx = pos_img.x - self.chip.cen_pix_x
		dy = pos_img.y - self.chip.cen_pix_y
		return self.PSFspin(dx, dy)

	def PSFspin(self, x, y):
		"""
		The PSF profile at a given image position relative to the axis center

		Parameters:
		theta : spin angles in a given exposure in unit of [arcsecond]
		dx, dy: relative position to the axis center in unit of [pixels]

		Return:
		Spinned PSF: g1, g2 and axis ratio 'a/b'
		"""
		a2Rad = np.pi/(60.0*60.0*180.0)
		
		ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
		rc = np.sqrt(x*x + y*y)
		cpix = rc*(self.sigSpin*a2Rad)

		beta = (np.arctan2(y,x) + np.pi/2)
		ell = cpix**2/(2.0*ff**2+cpix**2)
		#ell *= 10.0
		qr = np.sqrt((1.0+ell)/(1.0-ell))

		#psfShape = galsim.Shear(e=ell, beta=beta)
		#g1, g2 = psfShape.g1, psfShape.g2
		#qr = np.sqrt((1.0+ell)/(1.0-ell))

		#return ell, beta, qr
		PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
		return self.psf.shear(PSFshear), PSFshear