_dispatcher.py 26.3 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
30
31
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
41
42
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
    "data_model": None,
    "batch_id": "default_batch",
BO ZHANG's avatar
BO ZHANG committed
46
47
    "build": None,
    "pmapname": None,
BO ZHANG's avatar
BO ZHANG committed
48
49
}

BO ZHANG's avatar
BO ZHANG committed
50
51
52
53
54
55
56
57
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
58

BO ZHANG's avatar
BO ZHANG committed
59
60
61
62
63
64
65
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
66
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
67
68
69
70
71
72
73
74
75
76
77
78
79
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
80
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
119
120
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
BO ZHANG's avatar
tweak    
BO ZHANG committed
121
    return table.Table([{k: d.get(k, "") for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
122
123


BO ZHANG's avatar
BO ZHANG committed
124
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
125
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
153
154
155
156
157
158
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
159
160
161
162
163
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
164
165
166
        prompt = "plan"
        qr_kwargs = override_common_keys(PLAN_PARAMS, kwargs)
        qr = plan.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
167
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
168
169
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
170
        # plan basis / obsid basis
171
172
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
173
174
                if _["instrument"] == "HSTDM":
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
175
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
176
                    else:
BO ZHANG's avatar
BO ZHANG committed
177
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
178
179
180
                else:
                    this_n_file = 1
                _["n_file"] = this_n_file
181
182
183
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
184
185
186
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
187
        )
BO ZHANG's avatar
BO ZHANG committed
188
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
189
190

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
191
192
193
194
195
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
196
197
198
        prompt = "level0"
        qr_kwargs = override_common_keys(LEVEL0_PARAMS, kwargs)
        qr = level0.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
199
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
200
201
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
202
203
204
205
206
207
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
208

BO ZHANG's avatar
BO ZHANG committed
209
210
211
212
213
214
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
215
216
217
        prompt = "level1"
        qr_kwargs = override_common_keys(LEVEL1_PARAMS, kwargs)
        qr = level1.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
218
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
219
220
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
221
222
223
224
225
226
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
227

228
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
229
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
230
231
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
232
233
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
234
235
236
237
238
239
240
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
241
        assert len(relevant_plan) > 0, relevant_plan
242
243
244
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
245
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
246
247
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
248
249
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
250
251
252
253
254
255
256
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
257
        assert len(relevant_plan) > 0, relevant_plan
258
259
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
260
261
262
263
264
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
265
266
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
267

268
269
270
271
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
272
273
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
274

275
        # sort data_basis before dispatching
276
        data_basis.sort(keys=data_basis.colnames)
277

278
        # loop over data
279
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
280
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
281
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
282
283
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
284
285
286
287
288
289
290
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
291
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
292
293
294
295
296
297
298
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
299
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
300
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
301
            )
302
303
304
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
305
306
307
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
308
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
309
310
311
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
312
313
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
314
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
315
316
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
317
318
                )
            )
BO ZHANG's avatar
BO ZHANG committed
319

BO ZHANG's avatar
BO ZHANG committed
320
        return task_list
BO ZHANG's avatar
BO ZHANG committed
321

BO ZHANG's avatar
BO ZHANG committed
322
323
324
325
326
327
328
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
329

BO ZHANG's avatar
BO ZHANG committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

347
348
349
350
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
351
352
353
354
355
356
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
357
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
358
359
360
361
362
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
363
364
365
366
367
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
368
369
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
370
        )
BO ZHANG's avatar
BO ZHANG committed
371
372
373
374
375

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
376
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
405
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
406
407
408
409
410
411
412
413
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
414

BO ZHANG's avatar
BO ZHANG committed
415
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
416
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
417
418
419
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
420
            n_file_found = len(this_data_detector_files)
421
422
423
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
424
425
426
427
428
429
430
431
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
432
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
433
434
435
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
436
437
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
438
439
440
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
441
                        else list(this_data_detector_files["_id_data"])
442
                    ),
BO ZHANG's avatar
BO ZHANG committed
443
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
444
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

463
464
465
466
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
467
468
469
470
471
472
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
473
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
474
475
476
477
478
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
479
480
481
482
483
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
484
            ]
BO ZHANG's avatar
BO ZHANG committed
485
486
        )

BO ZHANG's avatar
BO ZHANG committed
487
488
489
490
        # initialize task list
        task_list = []

        # loop over plan
491
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
492
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
493
494
495
496
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
497
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
498
499
500
501
502
503
504
505
506
507
508
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
BO ZHANG's avatar
BO ZHANG committed
509
            print(this_data_obsid_file.colnames)
BO ZHANG's avatar
BO ZHANG committed
510
511
512
513
514
515
516
517
518
519
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
520
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
521
522
523
524
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
525
526
            this_n_file = (
                this_data_obsid_plan["n_file"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
527
            )
BO ZHANG's avatar
BO ZHANG committed
528
529
530
531
532
533
534
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
535
                this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
536
537
538
539
540
541
542
543
544
545
546
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
547

BO ZHANG's avatar
BO ZHANG committed
548
            n_file_expected = int(this_data_obsid_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
549
            n_file_found = len(this_data_obsid_file)
550
551
552
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
553
554
555
556
557
558
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
559
560
561
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
562
563
564
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
565
                        else list(this_data_obsid_file["_id_data"])
566
                    ),
BO ZHANG's avatar
BO ZHANG committed
567
                    n_file_expected=this_data_obsid_plan["n_file"].sum(),
568
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
569
570
571
572
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
573

BO ZHANG's avatar
BO ZHANG committed
574
    @staticmethod
575
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
576
577
        plan_basis: table.Table,
        data_basis: table.Table,
578
        # n_jobs: int = 1,
579
    ) -> list[dict]:
580
581
582
583
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

584
585
586
        # unique obsgroup basis (using group_by)
        obsgroup_basis = plan_basis.group_by(
            keys=[
BO ZHANG's avatar
BO ZHANG committed
587
588
589
590
591
592
593
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        # initialize task list
        task_list = []

        # loop over obsgroup
        for i_obsgroup in trange(len(obsgroup_basis.groups), **TQDM_KWARGS):
            this_obsgroup_basis = obsgroup_basis.groups[i_obsgroup]
            this_obsgroup_obsid = this_obsgroup_basis["obs_id"].data
            n_file_expected = this_obsgroup_basis["n_file"].sum()

            this_instrument = this_obsgroup_basis["instrument"][0]
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
                    dataset=this_obsgroup_basis["dataset"][0],
                    instrument=this_obsgroup_basis["instrument"][0],
                    obs_type=this_obsgroup_basis["obs_type"][0],
                    obs_group=this_obsgroup_basis["obs_group"][0],
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
                            dataset=this_obsgroup_basis["dataset"][0],
                            instrument=this_obsgroup_basis["instrument"][0],
                            obs_type=this_obsgroup_basis["obs_type"][0],
                            obs_group=this_obsgroup_basis["obs_group"][0],
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
                        relevant_plan=this_obsgroup_basis,
                        relevant_data=this_obsgroup_detector_found,
                        n_relevant_plan=len(this_obsgroup_basis),
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
667
668
669
670
671
672
673
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

674
675
676
677
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
678
679
680
681
682
683
684
685
686
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
687

BO ZHANG's avatar
BO ZHANG committed
688
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
689
690
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
691
        # loop over obsgroup
692
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
693
694
695
696
697

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
698
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
699
700
701
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
702
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
703
704
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
705
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
706
707
708
709
710
711
712
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
713
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
714
715
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
716
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
717
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
718
719
720
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
721
722

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
723
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
724
725
726
727
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
728
                )
BO ZHANG's avatar
BO ZHANG committed
729

BO ZHANG's avatar
BO ZHANG committed
730
731
732
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
733
734
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
735
                else:
BO ZHANG's avatar
BO ZHANG committed
736
737
738
739
740
741
742
743
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
744
745
                    )

BO ZHANG's avatar
BO ZHANG committed
746
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
747
            n_file_found = len(this_obsgroup_file)
748
749
750
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
751
752
753
754
755
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
756
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
757
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
758
                    n_relevant_plan=len(this_obsgroup_plan),
759
                    n_relevant_data=len(this_obsgroup_file),
760
761
762
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
763
                        else list(this_obsgroup_file["_id_data"])
764
                    ),
BO ZHANG's avatar
BO ZHANG committed
765
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
766
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
767
768
769
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
770
771

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
772
773
774
775
776
777
778
779
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
780
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
781
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
782
783
784
785
786
787
788
789
790
791
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis