_dispatcher.py 19.3 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

BO ZHANG's avatar
BO ZHANG committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
39
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
40
41
42
43
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
44
45
46
47
48
49
50
51
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
52

BO ZHANG's avatar
BO ZHANG committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "n_frame",
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
74
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
113
114
115
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
116
117


BO ZHANG's avatar
BO ZHANG committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
147
148
149
150
151
152
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
        for _ in qr.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
168
        )
BO ZHANG's avatar
BO ZHANG committed
169
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
170
171

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
172
173
174
175
176
177
178
179
180
181
182
183
184
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
185

BO ZHANG's avatar
BO ZHANG committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
200

201
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
202
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
203
204
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
205
206
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
207
208
209
210
211
212
213
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
214
        assert len(relevant_plan) > 0, relevant_plan
215
216
217
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
218
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
219
220
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
221
222
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
223
224
225
226
227
228
229
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
230
        assert len(relevant_plan) > 0, relevant_plan
231
232
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
233
234
235
236
237
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
238
239
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
240

BO ZHANG's avatar
BO ZHANG committed
241
242
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
243

244
        # sort data_basis before dispatching
245
        data_basis.sort(keys=data_basis.colnames)
246

247
        # loop over data
BO ZHANG's avatar
BO ZHANG committed
248
249
250
251
252
253
        for i_data_basis in trange(
            len(data_basis),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
254
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
255
256
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
257
258
259
260
261
262
263
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
264
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
265
266
267
268
269
270
271
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
272
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
273
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
274
275
276
277
            )
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
278
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
279
280
281
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
282
283
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
BO ZHANG's avatar
BO ZHANG committed
284
285
                )
            )
BO ZHANG's avatar
BO ZHANG committed
286

BO ZHANG's avatar
BO ZHANG committed
287
        return task_list
BO ZHANG's avatar
BO ZHANG committed
288

BO ZHANG's avatar
BO ZHANG committed
289
290
291
292
293
294
295
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
296

BO ZHANG's avatar
BO ZHANG committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
320
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
321
322
323
324
325
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
326
327
328
329
330
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
331
332
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
333
        )
BO ZHANG's avatar
BO ZHANG committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

        # initialize task list
        task_list = []

        # loop over plan
        for i_data_detector in trange(
            len(u_data_detector),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
372
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
373
374
375
376
377
378
379
380
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
381
382
383
384
385
386

            n_files_expected = (
                this_data_detector_plan["n_frame"][0]
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
387
388
389
390
391
392
393
394
395
396
397
398
399
            n_files_found = len(this_data_detector_files)
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
                        and n_files_found == n_files_expected
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
400
401
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
426
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
427
428
429
430
431
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
432
433
434
435
436
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
437
            ]
BO ZHANG's avatar
BO ZHANG committed
438
439
        )

BO ZHANG's avatar
BO ZHANG committed
440
441
442
443
444
445
446
447
448
        # initialize task list
        task_list = []

        # loop over plan
        for i_data_obsid in trange(
            len(u_data_obsid),
            unit="task",
            dynamic_ncols=True,
        ):
BO ZHANG's avatar
BO ZHANG committed
449
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
450
451
452
453
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
454
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
476
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
477
478
479
480
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
481
482
            this_n_frame = (
                this_data_obsid_plan["n_frame"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
483
            )
BO ZHANG's avatar
BO ZHANG committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
                this_n_file_expected = (this_n_frame, this_n_frame * 2)
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
503
504
505
506
507
508
509

            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
510
511
512
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
513
514
515
516
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
517

BO ZHANG's avatar
BO ZHANG committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
534

BO ZHANG's avatar
BO ZHANG committed
535
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
536
537
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
538
539
540
541
542
543
544
545
546
547
548
        # loop over obsgroup
        for i_obsgroup in trange(
            len(obsgroup_basis),
            unit="task",
            dynamic_ncols=True,
        ):

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
549
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
550
551
552
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
553
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
554
555
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
556
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
557
558
559
560
561
562
563
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
564
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
565
566
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
567
568
569
570
571
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
                this_n_frame = this_obsgroup_plan[i_obsid]["n_frame"]
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
572
573

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
574
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
575
576
577
578
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
579
                )
BO ZHANG's avatar
BO ZHANG committed
580

BO ZHANG's avatar
BO ZHANG committed
581
582
583
584
585
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
                    this_n_file_expected = (this_n_frame, this_n_frame * 2)
                    this_success &= this_n_file_found in this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
586
                else:
BO ZHANG's avatar
BO ZHANG committed
587
588
589
590
591
592
593
594
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
595
596
                    )

BO ZHANG's avatar
BO ZHANG committed
597
598
599
600
601
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
602
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
603
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
604
605
                    n_relevant_plan=len(this_obsgroup_plan),
                    n_relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
606
607
608
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
609

BO ZHANG's avatar
tweaks    
BO ZHANG committed
610
611
612
    def dispatch_obsgroup_detector(self):
        pass

BO ZHANG's avatar
BO ZHANG committed
613
    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
614
615
616
617
618
619
620
621
622
623
624
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
BO ZHANG's avatar
BO ZHANG committed
625
        # 未来如果HSTDM的设定简化一些,这里n_frame可以改成n_file,更直观
BO ZHANG's avatar
BO ZHANG committed
626
627
628
629
630
631
632
633
634
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis