_dispatcher.py 21.3 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
41
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
42
43
44
45
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
46
47
48
49
50
51
52
53
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
54

BO ZHANG's avatar
BO ZHANG committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "n_frame",
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
76
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
115
116
117
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
118
119


BO ZHANG's avatar
BO ZHANG committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
149
150
151
152
153
154
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
155
156
157
158
159
160
161
162
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
163
164
165
        try:
            for _ in qr.data:
                _["n_frame"] = (
BO ZHANG's avatar
BO ZHANG committed
166
                    _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
167
168
169
170
                )
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
171
172
173
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
174
        )
BO ZHANG's avatar
BO ZHANG committed
175
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
176
177

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
178
179
180
181
182
183
184
185
186
187
188
189
190
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
191

BO ZHANG's avatar
BO ZHANG committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
206

207
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
208
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
209
210
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
211
212
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
213
214
215
216
217
218
219
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
220
        assert len(relevant_plan) > 0, relevant_plan
221
222
223
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
224
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
225
226
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
227
228
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
229
230
231
232
233
234
235
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
236
        assert len(relevant_plan) > 0, relevant_plan
237
238
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
239
240
241
242
243
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
244
245
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
246

BO ZHANG's avatar
BO ZHANG committed
247
248
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
249

250
        # sort data_basis before dispatching
251
        data_basis.sort(keys=data_basis.colnames)
252

253
        # loop over data
254
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
255
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
256
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
257
258
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
259
260
261
262
263
264
265
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
266
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
267
268
269
270
271
272
273
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
274
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
275
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
276
            )
277
278
279
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
280
281
282
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
283
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
284
285
286
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
287
288
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
289
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
290
291
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
292
293
                )
            )
BO ZHANG's avatar
BO ZHANG committed
294

BO ZHANG's avatar
BO ZHANG committed
295
        return task_list
BO ZHANG's avatar
BO ZHANG committed
296

BO ZHANG's avatar
BO ZHANG committed
297
298
299
300
301
302
303
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
304

BO ZHANG's avatar
BO ZHANG committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
328
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
329
330
331
332
333
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
334
335
336
337
338
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
339
340
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
341
        )
BO ZHANG's avatar
BO ZHANG committed
342
343
344
345
346

        # initialize task list
        task_list = []

        # loop over plan
347
        for i_data_detector in trange(len(u_data_detector) ** TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
376
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
377
378
379
380
381
382
383
384
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
385

BO ZHANG's avatar
BO ZHANG committed
386
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
387
388
389
390
                this_data_detector_plan["n_frame"][0]
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
391
            n_file_found = len(this_data_detector_files)
392
393
394
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
395
396
397
398
399
400
401
402
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
403
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
404
405
406
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
407
408
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
409
410
411
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
412
                        else list(this_data_detector_files["_id_data"])
413
                    ),
414
415
                    n_file_expected=this_data_detector_plan["n_frame"].sum(),
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
440
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
441
442
443
444
445
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
446
447
448
449
450
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
451
            ]
BO ZHANG's avatar
BO ZHANG committed
452
453
        )

BO ZHANG's avatar
BO ZHANG committed
454
455
456
457
        # initialize task list
        task_list = []

        # loop over plan
458
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
459
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
460
461
462
463
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
464
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
486
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
487
488
489
490
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
491
492
            this_n_frame = (
                this_data_obsid_plan["n_frame"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
493
            )
BO ZHANG's avatar
BO ZHANG committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
                this_n_file_expected = (this_n_frame, this_n_frame * 2)
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
513

BO ZHANG's avatar
BO ZHANG committed
514
515
            n_file_expected = this_data_obsid_plan["n_frame"].sum()
            n_file_found = len(this_data_obsid_file)
516
517
518
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
519
520
521
522
523
524
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
525
526
527
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
528
529
530
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
531
                        else list(this_data_obsid_file["_id_data"])
532
                    ),
533
534
                    n_file_expected=this_data_obsid_plan["n_frame"].sum(),
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
535
536
537
538
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
539

BO ZHANG's avatar
BO ZHANG committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
556

BO ZHANG's avatar
BO ZHANG committed
557
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
558
559
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
560
        # loop over obsgroup
561
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
562
563
564
565
566

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
567
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
568
569
570
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
571
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
572
573
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
574
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
575
576
577
578
579
580
581
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
582
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
583
584
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
585
586
587
588
589
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
                this_n_frame = this_obsgroup_plan[i_obsid]["n_frame"]
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
590
591

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
592
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
593
594
595
596
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
597
                )
BO ZHANG's avatar
BO ZHANG committed
598

BO ZHANG's avatar
BO ZHANG committed
599
600
601
602
603
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
                    this_n_file_expected = (this_n_frame, this_n_frame * 2)
                    this_success &= this_n_file_found in this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
604
                else:
BO ZHANG's avatar
BO ZHANG committed
605
606
607
608
609
610
611
612
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
613
614
                    )

BO ZHANG's avatar
BO ZHANG committed
615
616
            n_file_expected = this_obsgroup_plan["n_frame"].sum()
            n_file_found = len(this_obsgroup_file)
617
618
619
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
620
621
622
623
624
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
625
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
626
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
627
                    n_relevant_plan=len(this_obsgroup_plan),
628
                    n_relevant_data=len(this_obsgroup_file),
629
630
631
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
632
                        else list(this_obsgroup_file["_id_data"])
633
                    ),
634
635
                    n_file_expected=this_obsgroup_plan["n_frame"].sum(),
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
636
637
638
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
639

BO ZHANG's avatar
tweaks    
BO ZHANG committed
640
641
642
    def dispatch_obsgroup_detector(self):
        pass

BO ZHANG's avatar
BO ZHANG committed
643
    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
644
645
646
647
648
649
650
651
652
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
            _["n_frame"] = (
BO ZHANG's avatar
BO ZHANG committed
653
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
654
            )
BO ZHANG's avatar
BO ZHANG committed
655
        # 未来如果HSTDM的设定简化一些,这里n_frame可以改成n_file,更直观
BO ZHANG's avatar
BO ZHANG committed
656
657
658
659
660
661
662
663
664
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis