_dispatcher.py 21.8 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
41
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
42
43
44
45
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
46
47
48
49
50
51
52
53
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
54

BO ZHANG's avatar
BO ZHANG committed
55
56
57
58
59
60
61
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
62
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
63
64
65
66
67
68
69
70
71
72
73
74
75
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
76
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
115
116
117
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
118
119


BO ZHANG's avatar
BO ZHANG committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
149
150
151
152
153
154
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
155
156
157
158
159
160
161
162
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
163
164
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
165
166
167
168
169
170
171
172
                if _["instrument"] == "HSTDM":
                    if _["params"]["detector"] == "SIS12":
                        this_n_file = _["params"]["num_epec_frame"] * 2
                    else:
                        this_n_file = _["params"]["num_epec_frame"]
                else:
                    this_n_file = 1
                _["n_file"] = this_n_file
173
174
175
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
176
177
178
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
179
        )
BO ZHANG's avatar
BO ZHANG committed
180
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
181
182

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
183
184
185
186
187
188
189
190
191
192
193
194
195
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
196

BO ZHANG's avatar
BO ZHANG committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
211

212
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
213
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
214
215
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
216
217
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
218
219
220
221
222
223
224
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
225
        assert len(relevant_plan) > 0, relevant_plan
226
227
228
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
229
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
230
231
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
232
233
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
234
235
236
237
238
239
240
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
241
        assert len(relevant_plan) > 0, relevant_plan
242
243
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
244
245
246
247
248
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
249
250
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
251

BO ZHANG's avatar
BO ZHANG committed
252
253
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
254

255
        # sort data_basis before dispatching
256
        data_basis.sort(keys=data_basis.colnames)
257

258
        # loop over data
259
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
260
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
261
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
262
263
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
264
265
266
267
268
269
270
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
271
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
272
273
274
275
276
277
278
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
279
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
280
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
281
            )
282
283
284
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
285
286
287
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
288
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
289
290
291
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
292
293
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
294
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
295
296
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
297
298
                )
            )
BO ZHANG's avatar
BO ZHANG committed
299

BO ZHANG's avatar
BO ZHANG committed
300
        return task_list
BO ZHANG's avatar
BO ZHANG committed
301

BO ZHANG's avatar
BO ZHANG committed
302
303
304
305
306
307
308
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
309

BO ZHANG's avatar
BO ZHANG committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
333
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
334
335
336
337
338
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
339
340
341
342
343
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
344
345
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
346
        )
BO ZHANG's avatar
BO ZHANG committed
347
348
349
350
351

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
352
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
381
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
382
383
384
385
386
387
388
389
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
390

BO ZHANG's avatar
BO ZHANG committed
391
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
392
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
393
394
395
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
396
            n_file_found = len(this_data_detector_files)
397
398
399
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
400
401
402
403
404
405
406
407
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
408
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
409
410
411
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
412
413
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
414
415
416
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
417
                        else list(this_data_detector_files["_id_data"])
418
                    ),
BO ZHANG's avatar
BO ZHANG committed
419
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
420
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
445
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
446
447
448
449
450
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
451
452
453
454
455
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
456
            ]
BO ZHANG's avatar
BO ZHANG committed
457
458
        )

BO ZHANG's avatar
BO ZHANG committed
459
460
461
462
        # initialize task list
        task_list = []

        # loop over plan
463
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
464
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
465
466
467
468
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
469
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
491
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
492
493
494
495
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
496
497
            this_n_file = (
                this_data_obsid_plan["n_file"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
498
            )
BO ZHANG's avatar
BO ZHANG committed
499
500
501
502
503
504
505
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
506
                this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
507
508
509
510
511
512
513
514
515
516
517
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
518

BO ZHANG's avatar
BO ZHANG committed
519
            n_file_expected = int(this_data_obsid_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
520
            n_file_found = len(this_data_obsid_file)
521
522
523
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
524
525
526
527
528
529
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
530
531
532
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
533
534
535
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
536
                        else list(this_data_obsid_file["_id_data"])
537
                    ),
BO ZHANG's avatar
BO ZHANG committed
538
                    n_file_expected=this_data_obsid_plan["n_file"].sum(),
539
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
540
541
542
543
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
544

BO ZHANG's avatar
BO ZHANG committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    @staticmethod
    def disptach_obsgroup_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ):
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

BO ZHANG's avatar
BO ZHANG committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
577

BO ZHANG's avatar
BO ZHANG committed
578
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
579
580
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
581
        # loop over obsgroup
582
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
583
584
585
586
587

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
588
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
589
590
591
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
592
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
593
594
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
595
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
596
597
598
599
600
601
602
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
603
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
604
605
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
606
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
607
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
608
609
610
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
611
612

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
613
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
614
615
616
617
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
618
                )
BO ZHANG's avatar
BO ZHANG committed
619

BO ZHANG's avatar
BO ZHANG committed
620
621
622
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
623
                    this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
624
                    this_success &= this_n_file_found in this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
625
                else:
BO ZHANG's avatar
BO ZHANG committed
626
627
628
629
630
631
632
633
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
634
635
                    )

BO ZHANG's avatar
BO ZHANG committed
636
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
637
            n_file_found = len(this_obsgroup_file)
638
639
640
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
641
642
643
644
645
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
646
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
647
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
648
                    n_relevant_plan=len(this_obsgroup_plan),
649
                    n_relevant_data=len(this_obsgroup_file),
650
651
652
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
653
                        else list(this_obsgroup_file["_id_data"])
654
                    ),
BO ZHANG's avatar
BO ZHANG committed
655
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
656
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
657
658
659
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
660

BO ZHANG's avatar
tweaks    
BO ZHANG committed
661
662
663
    def dispatch_obsgroup_detector(self):
        pass

BO ZHANG's avatar
BO ZHANG committed
664
    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
665
666
667
668
669
670
671
672
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
673
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
674
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
675
676
677
678
679
680
681
682
683
684
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis