_dispatcher.py 19.5 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

BO ZHANG's avatar
BO ZHANG committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
BO ZHANG's avatar
BO ZHANG committed
39
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
40
41
42
43
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
44
45
46
47
48
49
50
51
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
52

BO ZHANG's avatar
BO ZHANG committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "n_frame",
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
74
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
113
114
115
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
116
117


BO ZHANG's avatar
BO ZHANG committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
147
148
149
150
151
152
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
153
154
155
156
157
158
159
160
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
161
162
163
        try:
            for _ in qr.data:
                _["n_frame"] = (
BO ZHANG's avatar
BO ZHANG committed
164
                    _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
165
166
167
168
                )
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
169
170
171
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
172
        )
BO ZHANG's avatar
BO ZHANG committed
173
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
174
175

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
176
177
178
179
180
181
182
183
184
185
186
187
188
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
189

BO ZHANG's avatar
BO ZHANG committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
204

205
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
206
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
207
208
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
209
210
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
211
212
213
214
215
216
217
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
218
        assert len(relevant_plan) > 0, relevant_plan
219
220
221
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
222
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
223
224
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
225
226
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
227
228
229
230
231
232
233
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
234
        assert len(relevant_plan) > 0, relevant_plan
235
236
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
237
238
239
240
241
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
242
243
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
244

BO ZHANG's avatar
BO ZHANG committed
245
246
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
247

248
        # sort data_basis before dispatching
249
        data_basis.sort(keys=data_basis.colnames)
250

251
        # loop over data
BO ZHANG's avatar
BO ZHANG committed
252
253
254
255
256
257
        for i_data_basis in trange(
            len(data_basis),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
258
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
259
260
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
261
262
263
264
265
266
267
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
268
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
269
270
271
272
273
274
275
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
276
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
277
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
278
279
280
281
            )
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
282
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
283
284
285
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
286
287
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
BO ZHANG's avatar
BO ZHANG committed
288
289
                )
            )
BO ZHANG's avatar
BO ZHANG committed
290

BO ZHANG's avatar
BO ZHANG committed
291
        return task_list
BO ZHANG's avatar
BO ZHANG committed
292

BO ZHANG's avatar
BO ZHANG committed
293
294
295
296
297
298
299
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
300

BO ZHANG's avatar
BO ZHANG committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
324
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
325
326
327
328
329
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
330
331
332
333
334
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
335
336
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
337
        )
BO ZHANG's avatar
BO ZHANG committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

        # initialize task list
        task_list = []

        # loop over plan
        for i_data_detector in trange(
            len(u_data_detector),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
376
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
377
378
379
380
381
382
383
384
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
385
386
387
388
389
390

            n_files_expected = (
                this_data_detector_plan["n_frame"][0]
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
391
392
393
394
395
396
397
398
399
400
401
402
403
            n_files_found = len(this_data_detector_files)
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
                        and n_files_found == n_files_expected
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
404
405
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
430
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
431
432
433
434
435
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
436
437
438
439
440
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
441
            ]
BO ZHANG's avatar
BO ZHANG committed
442
443
        )

BO ZHANG's avatar
BO ZHANG committed
444
445
446
447
448
449
450
451
452
        # initialize task list
        task_list = []

        # loop over plan
        for i_data_obsid in trange(
            len(u_data_obsid),
            unit="task",
            dynamic_ncols=True,
        ):
BO ZHANG's avatar
BO ZHANG committed
453
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
454
455
456
457
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
458
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
480
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
481
482
483
484
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
485
486
            this_n_frame = (
                this_data_obsid_plan["n_frame"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
487
            )
BO ZHANG's avatar
BO ZHANG committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
                this_n_file_expected = (this_n_frame, this_n_frame * 2)
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
507
508
509
510
511
512
513

            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
514
515
516
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
517
518
519
520
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
521

BO ZHANG's avatar
BO ZHANG committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
538

BO ZHANG's avatar
BO ZHANG committed
539
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
540
541
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
542
543
544
545
546
547
548
549
550
551
552
        # loop over obsgroup
        for i_obsgroup in trange(
            len(obsgroup_basis),
            unit="task",
            dynamic_ncols=True,
        ):

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
553
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
554
555
556
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
557
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
558
559
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
560
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
561
562
563
564
565
566
567
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
568
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
569
570
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
571
572
573
574
575
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
                this_n_frame = this_obsgroup_plan[i_obsid]["n_frame"]
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
576
577

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
578
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
579
580
581
582
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
583
                )
BO ZHANG's avatar
BO ZHANG committed
584

BO ZHANG's avatar
BO ZHANG committed
585
586
587
588
589
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
                    this_n_file_expected = (this_n_frame, this_n_frame * 2)
                    this_success &= this_n_file_found in this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
590
                else:
BO ZHANG's avatar
BO ZHANG committed
591
592
593
594
595
596
597
598
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
599
600
                    )

BO ZHANG's avatar
BO ZHANG committed
601
602
603
604
605
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
606
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
607
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
608
609
                    n_relevant_plan=len(this_obsgroup_plan),
                    n_relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
610
611
612
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
613

BO ZHANG's avatar
tweaks    
BO ZHANG committed
614
615
616
    def dispatch_obsgroup_detector(self):
        pass

BO ZHANG's avatar
BO ZHANG committed
617
    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
618
619
620
621
622
623
624
625
626
627
628
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
BO ZHANG's avatar
BO ZHANG committed
629
        # 未来如果HSTDM的设定简化一些,这里n_frame可以改成n_file,更直观
BO ZHANG's avatar
BO ZHANG committed
630
631
632
633
634
635
636
637
638
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis