_dispatcher.py 24.9 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
30
31
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
41
42
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
    "data_model": None,
    "batch_id": "default_batch",
BO ZHANG's avatar
BO ZHANG committed
46
    # "build": None,
BO ZHANG's avatar
BO ZHANG committed
47
    # "pmapname": None,
BO ZHANG's avatar
BO ZHANG committed
48
49
}

BO ZHANG's avatar
BO ZHANG committed
50
51
52
53
54
55
56
57
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
58

BO ZHANG's avatar
BO ZHANG committed
59
60
61
62
63
64
65
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
66
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
67
68
69
70
    "_id",
)

# data basis keys
71
72
LEVEL0_DATA_BASIS_KEYS = (
    "instrument",
BO ZHANG's avatar
BO ZHANG committed
73
    "dataset",
74
75
76
77
78
79
80
81
82
83
84
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
    "prc_status",
    "qc_status",
)

LEVEL1_DATA_BASIS_KEYS = (
BO ZHANG's avatar
BO ZHANG committed
85
    "instrument",
86
    "dataset",
BO ZHANG's avatar
BO ZHANG committed
87
88
89
90
91
92
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
93
    "prc_status",
94
95
96
    "qc_status",
    "data_model",
    "batch_id",
BO ZHANG's avatar
BO ZHANG committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
135
136
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
BO ZHANG's avatar
tweak    
BO ZHANG committed
137
    return table.Table([{k: d.get(k, "") for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
138
139


BO ZHANG's avatar
BO ZHANG committed
140
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
141
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
169
170
171
172
173
174
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
175
176
177
178
179
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
180
181
182
        prompt = "plan"
        qr_kwargs = override_common_keys(PLAN_PARAMS, kwargs)
        qr = plan.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
183
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
184
185
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
186
        # plan basis / obsid basis
187
188
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
189
190
                this_instrument = _["instrument"]
                if this_instrument == "HSTDM":
BO ZHANG's avatar
BO ZHANG committed
191
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
192
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
193
                    else:
BO ZHANG's avatar
BO ZHANG committed
194
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
195
                else:
BO ZHANG's avatar
BO ZHANG committed
196
                    # count effective detectors of this instrument
BO ZHANG's avatar
BO ZHANG committed
197
                    this_n_file = len(csst[this_instrument].effective_detector_names)
BO ZHANG's avatar
BO ZHANG committed
198
                _["n_file"] = this_n_file
199
200
201
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
202
203
204
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
205
        )
BO ZHANG's avatar
BO ZHANG committed
206
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
207
208

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
209
210
211
212
213
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
214
215
216
        prompt = "level0"
        qr_kwargs = override_common_keys(LEVEL0_PARAMS, kwargs)
        qr = level0.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
217
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
218
219
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
220
221
222
        # data basis
        data_basis = extract_basis_table(
            qr.data,
223
            LEVEL0_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
224
225
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
226

BO ZHANG's avatar
BO ZHANG committed
227
228
229
230
231
232
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
233
234
235
        prompt = "level1"
        qr_kwargs = override_common_keys(LEVEL1_PARAMS, kwargs)
        qr = level1.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
236
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
237
238
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
239
240
241
        # data basis
        data_basis = extract_basis_table(
            qr.data,
242
            LEVEL1_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
243
244
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
245

246
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
247
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
248
249
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
250
251
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
252
253
254
255
256
257
258
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
259
        assert len(relevant_plan) > 0, relevant_plan
260
261
262
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
263
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
264
265
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
266
267
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
268
269
270
271
272
273
274
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
275
        assert len(relevant_plan) > 0, relevant_plan
276
277
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
278
279
280
281
282
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
283
284
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
285

286
287
288
289
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
290
291
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
292

293
        # sort data_basis before dispatching
294
        data_basis.sort(keys=data_basis.colnames)
295

296
        # loop over data
297
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
298
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
299
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
300
301
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
302
303
304
305
306
307
308
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
309
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
310
311
312
313
314
315
316
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
317
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
318
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
319
            )
320
321
322
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
323
324
325
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
326
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
327
328
329
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
330
331
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
332
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
333
334
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
335
336
                )
            )
BO ZHANG's avatar
BO ZHANG committed
337

BO ZHANG's avatar
BO ZHANG committed
338
        return task_list
BO ZHANG's avatar
BO ZHANG committed
339

BO ZHANG's avatar
BO ZHANG committed
340
341
342
343
344
345
346
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
347

BO ZHANG's avatar
BO ZHANG committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

365
366
367
368
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
369
370
371
372
373
374
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
375
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
376
377
378
379
380
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
381
382
383
384
385
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
386
387
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
388
        )
BO ZHANG's avatar
BO ZHANG committed
389
390
391
392
393

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
394
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
423
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
424
425
426
427
428
429
430
431
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
432

BO ZHANG's avatar
BO ZHANG committed
433
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
434
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
435
436
437
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
438
            n_file_found = len(this_data_detector_files)
439
440
441
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
442
443
444
445
446
447
448
449
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
450
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
451
452
453
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
454
455
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
456
457
458
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
459
                        else list(this_data_detector_files["_id_data"])
460
                    ),
BO ZHANG's avatar
BO ZHANG committed
461
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
462
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

481
482
483
484
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

485
486
        group_keys = ["dataset", "instrument", "obs_type", "obs_group", "obs_id"]
        obsid_basis = data_basis.group_by(group_keys)
BO ZHANG's avatar
BO ZHANG committed
487

BO ZHANG's avatar
BO ZHANG committed
488
489
        # initialize task list
        task_list = []
490
491
        # loop over obsid
        for this_obsid_basis in obsid_basis.groups:
492
            # find relevant plan
493
494
495
496
            this_relevant_plan_basis = table.join(
                this_obsid_basis[group_keys][:1],
                plan_basis,
                keys=group_keys,
BO ZHANG's avatar
BO ZHANG committed
497
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
498
            )
499
            assert len(this_relevant_plan_basis) == 1
500
501
            # generate task
            this_task = dict(this_relevant_plan_basis[group_keys][0])
502
503
504
505
506
507
508
509
            n_file_expected = this_relevant_plan_basis[0]["n_file"]
            n_file_found = len(this_obsid_basis)
            this_instrument = this_relevant_plan_basis[0]["instrument"]
            detectors_found = set(this_obsid_basis["detector"])
            detectors_expected = set(csst[this_instrument].effective_detector_names)
            this_success = (
                n_file_expected == n_file_found
                and detectors_found == detectors_expected
BO ZHANG's avatar
BO ZHANG committed
510
            )
511
512
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
513
514
515
            # append this task
            task_list.append(
                dict(
516
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
517
                    success=this_success,
518
519
520
521
                    relevant_plan=this_relevant_plan_basis,
                    relevant_data=this_obsid_basis,
                    n_relevant_plan=len(this_relevant_plan_basis),
                    n_relevant_data=len(this_obsid_basis),
522
523
                    relevant_data_id_list=(
                        []
524
525
                        if len(this_obsid_basis) == 0
                        else list(this_obsid_basis["_id"])
526
                    ),
527
528
                    n_file_expected=n_file_expected,
                    n_file_found=n_file_found,
BO ZHANG's avatar
BO ZHANG committed
529
530
531
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
532

BO ZHANG's avatar
BO ZHANG committed
533
    @staticmethod
534
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
535
536
        plan_basis: table.Table,
        data_basis: table.Table,
537
        # n_jobs: int = 1,
538
    ) -> list[dict]:
539
540
541
542
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

543
544
545
        # unique obsgroup basis (using group_by)
        obsgroup_basis = plan_basis.group_by(
            keys=[
BO ZHANG's avatar
BO ZHANG committed
546
547
548
549
550
551
552
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        # initialize task list
        task_list = []

        # loop over obsgroup
        for i_obsgroup in trange(len(obsgroup_basis.groups), **TQDM_KWARGS):
            this_obsgroup_basis = obsgroup_basis.groups[i_obsgroup]
            this_obsgroup_obsid = this_obsgroup_basis["obs_id"].data
            n_file_expected = this_obsgroup_basis["n_file"].sum()

            this_instrument = this_obsgroup_basis["instrument"][0]
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
                    dataset=this_obsgroup_basis["dataset"][0],
                    instrument=this_obsgroup_basis["instrument"][0],
                    obs_type=this_obsgroup_basis["obs_type"][0],
                    obs_group=this_obsgroup_basis["obs_group"][0],
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
                            dataset=this_obsgroup_basis["dataset"][0],
                            instrument=this_obsgroup_basis["instrument"][0],
                            obs_type=this_obsgroup_basis["obs_type"][0],
                            obs_group=this_obsgroup_basis["obs_group"][0],
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
                        relevant_plan=this_obsgroup_basis,
                        relevant_data=this_obsgroup_detector_found,
                        n_relevant_plan=len(this_obsgroup_basis),
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
626
627
628
629
630
631
632
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

633
634
635
636
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
637
638
639
640
641
642
643
644
645
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
646

BO ZHANG's avatar
BO ZHANG committed
647
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
648
649
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
650
        # loop over obsgroup
651
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
652
653
654
655
656

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
657
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
658
659
660
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
661
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
662
663
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
664
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
665
666
667
668
669
670
671
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
672
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
673
674
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
675
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
676
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
677
678
679
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
680
681

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
682
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
683
684
685
686
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
687
                )
BO ZHANG's avatar
BO ZHANG committed
688

BO ZHANG's avatar
BO ZHANG committed
689
690
691
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
692
693
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
694
                else:
BO ZHANG's avatar
BO ZHANG committed
695
696
697
698
699
700
701
702
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
703
704
                    )

BO ZHANG's avatar
BO ZHANG committed
705
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
706
            n_file_found = len(this_obsgroup_file)
707
708
709
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
710
711
712
713
714
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
715
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
716
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
717
                    n_relevant_plan=len(this_obsgroup_plan),
718
                    n_relevant_data=len(this_obsgroup_file),
719
720
721
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
722
                        else list(this_obsgroup_file["_id_data"])
723
                    ),
BO ZHANG's avatar
BO ZHANG committed
724
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
725
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
726
727
728
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
729
730

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
731
732
733
734
735
736
737
738
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
739
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
740
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
741
742
743
744
745
746
747
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
748
            LEVEL0_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
749
750
        )
        return plan_basis, data_basis