Position.rst 15.3 KB
Newer Older
1
2
.. File Position.rst

Emmanuel Bertin's avatar
Emmanuel Bertin committed
3
4
.. include:: global.rst

5
6
Position and shape parameters derived from the isophotal profile
================================================================
7

Emmanuel Bertin's avatar
Emmanuel Bertin committed
8
The following parameters are derived from the spatial distribution :math:`\cal S` of pixels detected above the analysis threshold (see :ref:`description<isophotal_measurements>`).
9
10
11

.. important::
  Unless otherwise noted, pixel values :math:`I_i` are taken from the (filtered) detection image.
12

13
.. note::
14
15
16
17
18
  Unless otherwise noted, all parameter names given below are only prefixes.
  They must be followed by _IMAGE if the results shall be expressed in pixel coordinates or :param:`_WORLD`, :param:`_SKY, :param:`_J2000` or :param:`_B1950` for |WCS|_ coordinates (see :ref:`coord_suffix`).


.. _xyminmax_def:
19

Emmanuel Bertin's avatar
Emmanuel Bertin committed
20
21
Limits: :param:`XMIN`, :param:`YMIN`, :param:`XMAX`, :param:`YMAX`
------------------------------------------------------------------
22

Emmanuel Bertin's avatar
Emmanuel Bertin committed
23
These coordinates define two corners of a rectangle which encloses the detected object:
24
25

.. math::
26
  :label: xminymax
27
28
29
30
31
32
33
34

   \begin{aligned}
   {\tt XMIN} & = & \min_{i \in {\cal S}} x_i,\\
   {\tt YMIN} & = & \min_{i \in {\cal S}} y_i,\\
   {\tt XMAX} & = & \max_{i \in {\cal S}} x_i,\\
   {\tt YMAX} & = & \max_{i \in {\cal S}} y_i,
   \end{aligned}

Emmanuel Bertin's avatar
Emmanuel Bertin committed
35
where :math:`x_i` and :math:`y_i` are respectively the x-coordinate and y-coordinate of pixel :math:`i`.
36

37
38
39

.. _pos_iso_def:

Emmanuel Bertin's avatar
Emmanuel Bertin committed
40
41
Barycenter: :param:`X`, :param:`Y`
----------------------------------
42

Emmanuel Bertin's avatar
Emmanuel Bertin committed
43
Barycenter coordinates generally define the position of the “center” of a source, although this definition can be inadequate or inaccurate if its spatial profile shows a strong skewness or very large wings. X and Y are simply computed as the first order moments of the profile:
44
45

.. math::
46
  :label: xy
47
48
49

   \begin{aligned}
   {\tt X} & = & \overline{x} = \frac{\displaystyle \sum_{i \in {\cal S}}
50
51
52
   I_i x_i}{\displaystyle \sum_{i \in {\cal S}} I_i},\\
   {\tt Y} & = & \overline{y} = \frac{\displaystyle \sum_{i \in {\cal S}}
   I_i y_i}{\displaystyle \sum_{i \in {\cal S}} I_i}.
53
54
   \end{aligned}

Emmanuel Bertin's avatar
Emmanuel Bertin committed
55
In practice, :math:`x_i` and :math:`y_i` are summed relative to :param:`XMIN` and :param:`YMIN` in order to reduce roundoff errors in the summing.
56

57
58
59

.. _pospeak_def:

Emmanuel Bertin's avatar
Emmanuel Bertin committed
60
61
Position of the peak: :param:`XPEAK`, :param:`YPEAK`
----------------------------------------------------
62

Emmanuel Bertin's avatar
Emmanuel Bertin committed
63
It is sometimes useful to have the position :param:`XPEAK`, :param:`YPEAK` of the pixel with maximum intensity in a detected object, for instance when working with likelihood maps, or when searching for artifacts. For better robustness, PEAK coordinates are computed on *filtered* profiles if available. On symmetrical profiles, PEAK positions and barycenters coincide within a fraction of pixel (:param:`XPEAK` and :param:`YPEAK` coordinates are quantized by steps of 1 pixel, hence :param:`XPEAK_IMAGE` and :param:`YPEAK_IMAGE` are integers). This is no longer true for skewed profiles, therefore a simple comparison between PEAK and barycenter coordinates can be used to identify asymmetrical objects on well-sampled images.
64

65
66
67

.. _moments_iso_def:

Emmanuel Bertin's avatar
Emmanuel Bertin committed
68
69
2nd order moments: :param:`X2`, :param:`Y2`, :param:`XY`
--------------------------------------------------------
70

Emmanuel Bertin's avatar
Emmanuel Bertin committed
71
(Centered) second-order moments are convenient for measuring the spatial spread of a source profile. In |SExtractor| they are computed with:
72
73

.. math::
74
  :label: x2y2
75
76
77
78
79
80
81
82
83
84
85

   \begin{aligned}
   {\tt X2} & = \overline{x^2} = & \frac{\displaystyle \sum_{i \in {\cal
   S}} I_i x_i^2}{\displaystyle \sum_{i \in {\cal S}} I_i} -
   \overline{x}^2,\\ {\tt Y2} & = \overline{y^2} = & \frac{\displaystyle
   \sum_{i \in {\cal S}} I_i y_i^2}{\displaystyle \sum_{i \in {\cal S}}
   I_i} - \overline{y}^2,\\ {\tt XY} & = \overline{xy} = &
   \frac{\displaystyle \sum_{i \in {\cal S}} I_i x_i y_i}{\displaystyle
   \sum_{i \in {\cal S}} I_i} - \overline{x}\,\overline{y},
   \end{aligned}

Emmanuel Bertin's avatar
Emmanuel Bertin committed
86
87
88
These expressions are more subject to roundoff errors than if the 1st-order moments were subtracted before summing, but allow both 1st and
2nd order moments to be computed in one pass.
Roundoff errors are however kept to a negligible value by measuring all positions relative here again to :param:`XMIN` and :param:`YMIN`.
89

90

Emmanuel Bertin's avatar
Emmanuel Bertin committed
91
.. _shape_iso_def:
92

Emmanuel Bertin's avatar
Emmanuel Bertin committed
93
94
Basic shape parameters: :param:`A`, :param:`B`, :param:`THETA`
--------------------------------------------------------------
95

Emmanuel Bertin's avatar
Emmanuel Bertin committed
96
97
98
99
These parameters are intended to describe the detected object as an elliptical shape. :param:`A` and :param:`B` are the lengths of the semi-major and semi-minor axes, respectively.
More precisely, they represent the maximum and minimum spatial dispersion of the object profile along any direction.
:param:`THETA` is the position-angle of the :param:`A` axis relative to the first image axis.
It is counted positive in the direction of the second axis.
100

Emmanuel Bertin's avatar
Emmanuel Bertin committed
101
Here is how shape parameters are computed. 2nd-order moments can easily be expressed in a referential rotated from the :math:`x,y` image coordinate system by an angle +\ :math:`\theta`:
102
103

.. math::
104
  :label: varproj
105
106
107
108
109
110
111
112
113
114
115

   \begin{array}{lcrrr}
   \overline{x_{\theta}^2} & = & \cos^2\theta\:\overline{x^2} & +\,\sin^2\theta\:\overline{y^2}
               & -\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{y_{\theta}^2} & = & \sin^2\theta\:\overline{x^2} & +\,\cos^2\theta\:\overline{y^2}
               & +\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{xy_{\theta}} & = & \cos\theta \sin\theta\:\overline{x^2} &
   -\,\cos\theta \sin\theta\:\overline{y^2} & +\,(\cos^2\theta -
   \sin^2\theta)\:\overline{xy}.
   \end{array}

Emmanuel Bertin's avatar
Emmanuel Bertin committed
116
One can find the angle(s) :math:`\theta_0` for which the variance is minimized (or maximized) along :math:`x_{\theta}`:
117

118
119
120
121
.. math::
  :label: theta0

  {\left.\frac{\partial \overline{x_{\theta}^2}}{\partial \theta} \right|}_{\theta_0} = 0,
122
123
124
125

which leads to

.. math::
126
  :label: theta0_2
127
128
129
130
131
132
133

   2 \cos\theta \sin\theta_0\:(\overline{y^2} - \overline{x^2})
       + 2 (\cos^2\theta_0 - \sin^2\theta_0)\:\overline{xy} = 0.

If :math:`\overline{y^2} \neq \overline{x^2}`, this implies:

.. math::
134
   :label: theta0_3
135
136
137

   \tan 2\theta_0 = 2 \frac{\overline{xy}}{\overline{x^2} - \overline{y^2}},

Emmanuel Bertin's avatar
Emmanuel Bertin committed
138
139
140
141
142
143
a result which can also be obtained by requiring the covariance :math:`\overline{xy_{\theta_0}}` to be null.
Over the domain :math:`[-\pi/2, +\pi/2[`, two different angles — with opposite signs — satisfy :eq:`theta0_3`.
By definition, :param:`THETA` is the position angle for which :math:`\overline{x_{\theta}^2}` is maximized.
:param:`THETA` is therefore the solution to :eq:`theta0_3` that has the same sign as the
covariance :math:`\overline{xy}`.
:param:`A` and :param:`B` can now simply be expressed as:
144
145

.. math::
146
  :label: aimage
147
148
149

   \begin{aligned}
   {\tt A}^2 & = & \overline{x^2}_{\tt THETA},\ \ \ {\rm and}\\
Emmanuel Bertin's avatar
Emmanuel Bertin committed
150
151
   {\tt B}^2 & = & \overline{y^2}_{\tt THETA}.
   \end{aligned}
152

Emmanuel Bertin's avatar
Emmanuel Bertin committed
153
:param:`A` and :param:`B` can be computed directly from the 2nd-order moments, using the following equations derived from :eq:`varproj` after some algebra:
154
155

.. math::
156
  :label: aimage_2
157
158
159
160

   \begin{aligned}
   {\tt A}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2}
       + \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2},\\
161
   {\tt B}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2},
Emmanuel Bertin's avatar
Emmanuel Bertin committed
162
163
       - \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2}.
   \end{aligned}
164

Emmanuel Bertin's avatar
Emmanuel Bertin committed
165
166
Note that :param:`A` and :param:`B` are exactly halves the :math:`a` and :math:`b` parameters computed by the COSMOS image analyser :cite:`1980SPIE_264_208S`.
Actually, :math:`a` and :math:`b` are defined in :cite:`1980SPIE_264_208S` as the semi-major and semi-minor axes of an elliptical shape with constant surface brightness, which would have the same 2nd-order moments as the analyzed object.
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

.. _elong_iso_def:

By-products of shape parameters: :param:`ELONGATION` and :param:`ELLIPTICITY`
-----------------------------------------------------------------------------

These parameters [#elongation]_ are directly derived from :param:`A` and :param:`B`:

.. math::
  :label: elongation

   \begin{aligned}
   {\tt ELONGATION} & = & \frac{\tt A}{\tt B}\ \ \ \ \ \mbox{and}\\
   {\tt ELLIPTICITY} & = & 1 - \frac{\tt B}{\tt A}.
   \end{aligned}


Emmanuel Bertin's avatar
Emmanuel Bertin committed
185
.. _ellipse_iso_def:
186

Emmanuel Bertin's avatar
Emmanuel Bertin committed
187
188
Ellipse parameters: :param:`CXX`, :param:`CYY`, :param:`CXY`
------------------------------------------------------------
189

Emmanuel Bertin's avatar
Emmanuel Bertin committed
190
191
192
193
:param:`A`, :param:`B` and :param:`THETA` are not very convenient to use when, for instance, one wants to know if a particular |SExtractor| detection extends over some
position.
For this kind of application, three other ellipse parameters are provided; :param:`CXX`, :param:`CYY`, and :param:`CXY`.
They do nothing more than describing the same ellipse, but in a different way: the elliptical shape associated to a detection is now parameterized as
194
195

.. math::
196
  :label: ellipse
197
198
199
200

   {\tt CXX} (x-\overline{x})^2 + {\tt CYY} (y-\overline{y})^2
       + {\tt CXY} (x-\overline{x})(y-\overline{y}) = R^2,

Emmanuel Bertin's avatar
Emmanuel Bertin committed
201
202
where :math:`R` is a parameter which scales the ellipse, in units of :param:`A`
(or :param:`B`). Generally, the isophotal limit of a detected object is well
203
represented by :math:`R\approx 3` (:numref:`fig_ellipse`). Ellipse
204
205
206
parameters can be derived from the 2nd order moments:

.. math::
207
  :label: ellipse_2
208
209
210
211
212
213
214
215
216
217

   \begin{aligned}
   {\tt CXX} & = & \frac{\cos^2 {\tt THETA}}{{\tt A}^2} + \frac{\sin^2
   {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{y^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CYY} & = & \frac{\sin^2 {\tt THETA}}{{\tt
   A}^2} + \frac{\cos^2 {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{x^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CXY} & = & 2 \,\cos {\tt THETA}\,\sin {\tt
   THETA} \left( \frac{1}{{\tt A}^2} - \frac{1}{{\tt B}^2}\right) = -2\,
Emmanuel Bertin's avatar
Emmanuel Bertin committed
218
219
   \frac{\overline{xy}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}.
   \end{aligned}
220

221
222
223
224
225
226
.. _fig_ellipse:

.. figure:: figures/ellipse.*
   :figwidth: 100%
   :align: center

227
   Meaning of basic shape parameters.
228

229

230
.. _poserr_iso_def:
231

Emmanuel Bertin's avatar
Emmanuel Bertin committed
232
233
Position uncertainties: :param:`ERRX2`, :param:`ERRY2`, :param:`ERRXY`, :param:`ERRA`, :param:`ERRB`, :param:`ERRTHETA`, :param:`ERRCXX`, :param:`ERRCYY`, :param:`ERRCXY`
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
234
235

Uncertainties on the position of the barycenter can be estimated using
Emmanuel Bertin's avatar
Emmanuel Bertin committed
236
237
238
photon statistics.
In practice, such estimates are a lower-value of the full uncertainties because they do not include, for instance, the contribution of detection biases or contamination by neighbors.
Furthermore, |SExtractor| does not currently take into account possible correlations of the noise between adjacent pixels. Hence variances simply write:
239
240

.. math::
241
  :label: errxy
242
243
244
245
246
247
248
249
250
251

   \begin{aligned}
   {\tt ERRX2} & = {\rm var}(\overline{x}) = & \frac{\displaystyle
   \sum_{i \in {\cal S}} \sigma^2_i (x_i-\overline{x})^2} {\displaystyle
   \left(\sum_{i \in {\cal S}} I_i\right)^2},\\ {\tt ERRY2} & = {\rm
   var}(\overline{y}) = & \frac{\displaystyle \sum_{i \in {\cal S}}
   \sigma^2_i (y_i-\overline{y})^2} {\displaystyle \left(\sum_{i \in
   {\cal S}} I_i\right)^2},\\ {\tt ERRXY} & = {\rm
   cov}(\overline{x},\overline{y}) = & \frac{\displaystyle \sum_{i \in
   {\cal S}} \sigma^2_i (x_i-\overline{x})(y_i-\overline{y})}
Emmanuel Bertin's avatar
Emmanuel Bertin committed
252
253
   {\displaystyle \left(\sum_{i \in {\cal S}} I_i\right)^2}.
   \end{aligned}
254
255
256
257
258

:math:`\sigma_i` is the flux uncertainty estimated for pixel :math:`i`:

.. math:: \sigma^2_i = {\sigma_B}^2_i + \frac{I_i}{g_i},

Emmanuel Bertin's avatar
Emmanuel Bertin committed
259
where :math:`{\sigma_B}_i` is the local background noise and :math:`g_i` the local gain — conversion factor — for pixel :math:`i` (see :ref:`effect_of_weighting` for more details). Semi-major axis :param:`ERRA`, semi-minor axis :param:`ERRB`, and position angle :param:`ERRTHETA` of the :math:`1\sigma` position error ellipse are computed from the covariance matrix exactly like for :ref:`basic shape parameters<shape_iso_def>`:
260
261

.. math::
262
  :label: errabtheta
263
264
265
266
267
268
269
270
271

   \begin{aligned}
   {\tt ERRA}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       + \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRB}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       - \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   \tan (2{\tt ERRTHETA}) & = & 2 \,\frac{{\rm cov}(\overline{x},\overline{y})}
Emmanuel Bertin's avatar
Emmanuel Bertin committed
272
273
                       {{\rm var}(\overline{x}) - {\rm var}(\overline{y})}.
   \end{aligned}
274

275
And the error ellipse parameters are:
276
277

.. math::
278
  :label: errellipse
279
280
281
282
283
284
285
286
287
288
289
290
291
292

   \begin{aligned}
   {\tt ERRCXX} & = & \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRB}^2} = \frac{{\rm
   var}(\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRCYY} & = & \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRB}^2} =
   \frac{{\rm var}(\overline{x})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRCXY} & = & 2 \cos {\tt
   ERRTHETA}\sin {\tt ERRTHETA} \left( \frac{1}{{\tt ERRA}^2} -
   \frac{1}{{\tt ERRB}^2}\right)\\ & = & -2 \frac{{\rm
   cov}(\overline{x},\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
Emmanuel Bertin's avatar
Emmanuel Bertin committed
293
294
   {\rm cov}^2(\overline{x},\overline{y})}.
   \end{aligned}
295

296

297
298
299
Handling of “infinitely thin” detections
----------------------------------------

Emmanuel Bertin's avatar
Emmanuel Bertin committed
300
301
Apart from the mathematical singularities that can be found in some of the above equations describing shape parameters (and which |SExtractor| is able to handle, of course), some detections with very specific shapes may yield unphysical parameters, namely null values for :param:`B`, :param:`ERRB`, or even :param:`A` and :param:`ERRA`. 
Such detections include single-pixel objects and horizontal, vertical or diagonal lines which are 1-pixel wide. They will generally originate from glitches; but strongly undersampled and/or low S/N genuine sources may also produce such shapes.
302
303
304
305
306
307

For basic shape parameters, the following convention was adopted: if the
light distribution of the object falls on one single pixel, or lies on a
sufficiently thin line of pixels, which we translate mathematically by

.. math::
308
  :label: singutest
309
310
311

   \overline{x^2}\,\overline{y^2} - \overline{xy}^2 < \rho^2,

Emmanuel Bertin's avatar
Emmanuel Bertin committed
312
313
then :math:`\overline{x^2}` and :math:`\overline{y^2}` are incremented by :math:`\rho`. |SExtractor| sets :math:`\rho=1/12`, which is the variance of a 1-dimensional top-hat distribution with unit width.
Therefore :math:`1/\sqrt{12}` represents the typical minor-axis values assigned (in pixels units) to undersampled sources in |SExtractor|.
314

Emmanuel Bertin's avatar
Emmanuel Bertin committed
315
Positional errors are more difficult to handle, as objects with very high signal-to-noise can yield extremely small position uncertainties, just like singular profiles do. Therefore |SExtractor| first checks that :eq:`singutest` is true. If this is the case, a new test is conducted:
316
317

.. math::
318
  :label: singutest2
319
320
321
322

   {\rm var}(\overline{x})\,{\rm var}(\overline{y}) - {\rm
   covar}^2(\overline{x}, \overline{y}) < \rho^2_e,

Emmanuel Bertin's avatar
Emmanuel Bertin committed
323
324
where :math:`\rho_e` is arbitrarily set to :math:`\left( \sum_{i \in {\cal S}} \sigma^2_i \right) / \left(\sum_{i \in {\cal S}} I_i\right)^2`.
If :eq:`singutest2` is true, then :math:`\overline{x^2}` and :math:`\overline{y^2}` are incremented by :math:`\rho_e`.
325

Emmanuel Bertin's avatar
Emmanuel Bertin committed
326
.. [#elongation] These parameters are dimensionless, and for historical reasons do not accept suffixes such as :param:`_IMAGE` or :param:`_WORLD`.
327