Position.rst 15.4 KB
Newer Older
1
2
.. File Position.rst

Emmanuel Bertin's avatar
Emmanuel Bertin committed
3
4
.. include:: global.rst

5
6
Position and shape measurements derived from the isophotal profile
==================================================================
7

8
The following quantities are derived from the spatial distribution :math:`\cal S` of pixels detected above the analysis threshold (see :ref:`description<isophotal_measurements>`).
9
10

.. important::
11
  Unless otherwise noted, in this section pixel values :math:`p_i` above the local background are taken from the (filtered) detection image.
12

13
.. note::
14
15
16
17
18
  Unless otherwise noted, all parameter names given below are only prefixes.
  They must be followed by _IMAGE if the results shall be expressed in pixel coordinates or :param:`_WORLD`, :param:`_SKY, :param:`_J2000` or :param:`_B1950` for |WCS|_ coordinates (see :ref:`coord_suffix`).


.. _xyminmax_def:
19

Emmanuel Bertin's avatar
Emmanuel Bertin committed
20
21
Limits: :param:`XMIN`, :param:`YMIN`, :param:`XMAX`, :param:`YMAX`
------------------------------------------------------------------
22

Emmanuel Bertin's avatar
Emmanuel Bertin committed
23
These coordinates define two corners of a rectangle which encloses the detected object:
24
25

.. math::
26
  :label: xminymax
27

28
   \begin{eqnarray}
29
30
31
32
   {\tt XMIN} & = & \min_{i \in {\cal S}} x_i,\\
   {\tt YMIN} & = & \min_{i \in {\cal S}} y_i,\\
   {\tt XMAX} & = & \max_{i \in {\cal S}} x_i,\\
   {\tt YMAX} & = & \max_{i \in {\cal S}} y_i,
33
   \end{eqnarray}
34

Emmanuel Bertin's avatar
Emmanuel Bertin committed
35
where :math:`x_i` and :math:`y_i` are respectively the x-coordinate and y-coordinate of pixel :math:`i`.
36

37
38
39

.. _pos_iso_def:

Emmanuel Bertin's avatar
Emmanuel Bertin committed
40
41
Barycenter: :param:`X`, :param:`Y`
----------------------------------
42

Emmanuel Bertin's avatar
Emmanuel Bertin committed
43
Barycenter coordinates generally define the position of the “center” of a source, although this definition can be inadequate or inaccurate if its spatial profile shows a strong skewness or very large wings. X and Y are simply computed as the first order moments of the profile:
44
45

.. math::
46
  :label: xy
47

48
   \begin{eqnarray}
49
   {\tt X} & = & \overline{x} = \frac{\displaystyle \sum_{i \in {\cal S}}
50
   p_i x_i}{\displaystyle \sum_{i \in {\cal S}} p_i},\\
51
   {\tt Y} & = & \overline{y} = \frac{\displaystyle \sum_{i \in {\cal S}}
52
53
   p_i y_i}{\displaystyle \sum_{i \in {\cal S}} p_i}.
   \end{eqnarray}
54

Emmanuel Bertin's avatar
Emmanuel Bertin committed
55
In practice, :math:`x_i` and :math:`y_i` are summed relative to :param:`XMIN` and :param:`YMIN` in order to reduce roundoff errors in the summing.
56

57
58
59

.. _pospeak_def:

Emmanuel Bertin's avatar
Emmanuel Bertin committed
60
61
Position of the peak: :param:`XPEAK`, :param:`YPEAK`
----------------------------------------------------
62

Emmanuel Bertin's avatar
Emmanuel Bertin committed
63
It is sometimes useful to have the position :param:`XPEAK`, :param:`YPEAK` of the pixel with maximum intensity in a detected object, for instance when working with likelihood maps, or when searching for artifacts. For better robustness, PEAK coordinates are computed on *filtered* profiles if available. On symmetrical profiles, PEAK positions and barycenters coincide within a fraction of pixel (:param:`XPEAK` and :param:`YPEAK` coordinates are quantized by steps of 1 pixel, hence :param:`XPEAK_IMAGE` and :param:`YPEAK_IMAGE` are integers). This is no longer true for skewed profiles, therefore a simple comparison between PEAK and barycenter coordinates can be used to identify asymmetrical objects on well-sampled images.
64

65
66
67

.. _moments_iso_def:

68
Second-order moments: :param:`X2`, :param:`Y2`, :param:`XY`
Emmanuel Bertin's avatar
Emmanuel Bertin committed
69
--------------------------------------------------------
70

Emmanuel Bertin's avatar
Emmanuel Bertin committed
71
(Centered) second-order moments are convenient for measuring the spatial spread of a source profile. In |SExtractor| they are computed with:
72
73

.. math::
74
  :label: x2y2
75

76
77
78
79
80
   \begin{eqnarray}
   {\tt X2} & = \overline{x^2} = & \frac{\displaystyle \sum_{i \in {\cal S}} p_i x_i^2}{\displaystyle \sum_{i \in {\cal S}} p_i} - \overline{x}^2,\\
   {\tt Y2} & = \overline{y^2} = & \frac{\displaystyle \sum_{i \in {\cal S}} p_i y_i^2}{\displaystyle \sum_{i \in {\cal S}} p_i} - \overline{y}^2,\\
   {\tt XY} & = \overline{xy} = & \frac{\displaystyle \sum_{i \in {\cal S}} p_i x_i y_i}{\displaystyle \sum_{i \in {\cal S}} p_i} - \overline{x}\,\overline{y},
   \end{eqnarray}
81

Emmanuel Bertin's avatar
Emmanuel Bertin committed
82
83
84
These expressions are more subject to roundoff errors than if the 1st-order moments were subtracted before summing, but allow both 1st and
2nd order moments to be computed in one pass.
Roundoff errors are however kept to a negligible value by measuring all positions relative here again to :param:`XMIN` and :param:`YMIN`.
85

86

Emmanuel Bertin's avatar
Emmanuel Bertin committed
87
.. _shape_iso_def:
88

Emmanuel Bertin's avatar
Emmanuel Bertin committed
89
90
Basic shape parameters: :param:`A`, :param:`B`, :param:`THETA`
--------------------------------------------------------------
91

Emmanuel Bertin's avatar
Emmanuel Bertin committed
92
93
94
95
These parameters are intended to describe the detected object as an elliptical shape. :param:`A` and :param:`B` are the lengths of the semi-major and semi-minor axes, respectively.
More precisely, they represent the maximum and minimum spatial dispersion of the object profile along any direction.
:param:`THETA` is the position-angle of the :param:`A` axis relative to the first image axis.
It is counted positive in the direction of the second axis.
96

Emmanuel Bertin's avatar
Emmanuel Bertin committed
97
Here is how shape parameters are computed. 2nd-order moments can easily be expressed in a referential rotated from the :math:`x,y` image coordinate system by an angle +\ :math:`\theta`:
98
99

.. math::
100
  :label: varproj
101
102
103
104
105
106
107
108
109
110
111

   \begin{array}{lcrrr}
   \overline{x_{\theta}^2} & = & \cos^2\theta\:\overline{x^2} & +\,\sin^2\theta\:\overline{y^2}
               & -\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{y_{\theta}^2} & = & \sin^2\theta\:\overline{x^2} & +\,\cos^2\theta\:\overline{y^2}
               & +\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{xy_{\theta}} & = & \cos\theta \sin\theta\:\overline{x^2} &
   -\,\cos\theta \sin\theta\:\overline{y^2} & +\,(\cos^2\theta -
   \sin^2\theta)\:\overline{xy}.
   \end{array}

Emmanuel Bertin's avatar
Emmanuel Bertin committed
112
One can find the angle(s) :math:`\theta_0` for which the variance is minimized (or maximized) along :math:`x_{\theta}`:
113

114
115
116
117
.. math::
  :label: theta0

  {\left.\frac{\partial \overline{x_{\theta}^2}}{\partial \theta} \right|}_{\theta_0} = 0,
118
119
120
121

which leads to

.. math::
122
  :label: theta0_2
123
124
125
126
127
128
129

   2 \cos\theta \sin\theta_0\:(\overline{y^2} - \overline{x^2})
       + 2 (\cos^2\theta_0 - \sin^2\theta_0)\:\overline{xy} = 0.

If :math:`\overline{y^2} \neq \overline{x^2}`, this implies:

.. math::
130
   :label: theta0_3
131
132
133

   \tan 2\theta_0 = 2 \frac{\overline{xy}}{\overline{x^2} - \overline{y^2}},

Emmanuel Bertin's avatar
Emmanuel Bertin committed
134
135
136
137
138
139
a result which can also be obtained by requiring the covariance :math:`\overline{xy_{\theta_0}}` to be null.
Over the domain :math:`[-\pi/2, +\pi/2[`, two different angles — with opposite signs — satisfy :eq:`theta0_3`.
By definition, :param:`THETA` is the position angle for which :math:`\overline{x_{\theta}^2}` is maximized.
:param:`THETA` is therefore the solution to :eq:`theta0_3` that has the same sign as the
covariance :math:`\overline{xy}`.
:param:`A` and :param:`B` can now simply be expressed as:
140
141

.. math::
142
  :label: aimage
143

144
   \begin{eqnarray}
145
   {\tt A}^2 & = & \overline{x^2}_{\tt THETA},\ \ \ {\rm and}\\
Emmanuel Bertin's avatar
Emmanuel Bertin committed
146
   {\tt B}^2 & = & \overline{y^2}_{\tt THETA}.
147
   \end{eqnarray}
148

Emmanuel Bertin's avatar
Emmanuel Bertin committed
149
:param:`A` and :param:`B` can be computed directly from the 2nd-order moments, using the following equations derived from :eq:`varproj` after some algebra:
150
151

.. math::
152
  :label: aimage_2
153

154
   \begin{eqnarray}
155
156
   {\tt A}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2}
       + \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2},\\
157
   {\tt B}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2},
Emmanuel Bertin's avatar
Emmanuel Bertin committed
158
       - \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2}.
159
   \end{eqnarray}
160

Emmanuel Bertin's avatar
Emmanuel Bertin committed
161
162
Note that :param:`A` and :param:`B` are exactly halves the :math:`a` and :math:`b` parameters computed by the COSMOS image analyser :cite:`1980SPIE_264_208S`.
Actually, :math:`a` and :math:`b` are defined in :cite:`1980SPIE_264_208S` as the semi-major and semi-minor axes of an elliptical shape with constant surface brightness, which would have the same 2nd-order moments as the analyzed object.
163

164
165
166
167
168
169
170
171
172
173
174

.. _elong_iso_def:

By-products of shape parameters: :param:`ELONGATION` and :param:`ELLIPTICITY`
-----------------------------------------------------------------------------

These parameters [#elongation]_ are directly derived from :param:`A` and :param:`B`:

.. math::
  :label: elongation

175
   \begin{eqnarray}
176
177
   {\tt ELONGATION} & = & \frac{\tt A}{\tt B}\ \ \ \ \ \mbox{and}\\
   {\tt ELLIPTICITY} & = & 1 - \frac{\tt B}{\tt A}.
178
   \end{eqnarray}
179
180


Emmanuel Bertin's avatar
Emmanuel Bertin committed
181
.. _ellipse_iso_def:
182

Emmanuel Bertin's avatar
Emmanuel Bertin committed
183
184
Ellipse parameters: :param:`CXX`, :param:`CYY`, :param:`CXY`
------------------------------------------------------------
185

Emmanuel Bertin's avatar
Emmanuel Bertin committed
186
187
188
189
:param:`A`, :param:`B` and :param:`THETA` are not very convenient to use when, for instance, one wants to know if a particular |SExtractor| detection extends over some
position.
For this kind of application, three other ellipse parameters are provided; :param:`CXX`, :param:`CYY`, and :param:`CXY`.
They do nothing more than describing the same ellipse, but in a different way: the elliptical shape associated to a detection is now parameterized as
190
191

.. math::
192
  :label: ellipse
193
194
195
196

   {\tt CXX} (x-\overline{x})^2 + {\tt CYY} (y-\overline{y})^2
       + {\tt CXY} (x-\overline{x})(y-\overline{y}) = R^2,

Emmanuel Bertin's avatar
Emmanuel Bertin committed
197
198
where :math:`R` is a parameter which scales the ellipse, in units of :param:`A`
(or :param:`B`). Generally, the isophotal limit of a detected object is well
199
represented by :math:`R\approx 3` (:numref:`fig_ellipse`). Ellipse
200
201
202
parameters can be derived from the 2nd order moments:

.. math::
203
  :label: ellipse_2
204

205
   \begin{eqnarray}
206
207
208
209
210
211
212
213
   {\tt CXX} & = & \frac{\cos^2 {\tt THETA}}{{\tt A}^2} + \frac{\sin^2
   {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{y^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CYY} & = & \frac{\sin^2 {\tt THETA}}{{\tt
   A}^2} + \frac{\cos^2 {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{x^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CXY} & = & 2 \,\cos {\tt THETA}\,\sin {\tt
   THETA} \left( \frac{1}{{\tt A}^2} - \frac{1}{{\tt B}^2}\right) = -2\,
Emmanuel Bertin's avatar
Emmanuel Bertin committed
214
   \frac{\overline{xy}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}.
215
   \end{eqnarray}
216

217
218
219
220
221
222
.. _fig_ellipse:

.. figure:: figures/ellipse.*
   :figwidth: 100%
   :align: center

223
   Meaning of basic shape parameters.
224

225

226
.. _poserr_iso_def:
227

Emmanuel Bertin's avatar
Emmanuel Bertin committed
228
229
Position uncertainties: :param:`ERRX2`, :param:`ERRY2`, :param:`ERRXY`, :param:`ERRA`, :param:`ERRB`, :param:`ERRTHETA`, :param:`ERRCXX`, :param:`ERRCYY`, :param:`ERRCXY`
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
230
231

Uncertainties on the position of the barycenter can be estimated using
Emmanuel Bertin's avatar
Emmanuel Bertin committed
232
233
234
photon statistics.
In practice, such estimates are a lower-value of the full uncertainties because they do not include, for instance, the contribution of detection biases or contamination by neighbors.
Furthermore, |SExtractor| does not currently take into account possible correlations of the noise between adjacent pixels. Hence variances simply write:
235
236

.. math::
237
  :label: errxy
238

239
240
241
242
243
244
245
246
247
248
249
   \begin{eqnarray}
   {\tt ERRX2} & = {\rm var}(\overline{x}) =
   & \frac{\displaystyle \sum_{i \in {\cal S}} \sigma^2_i (x_i-\overline{x})^2}
   {\displaystyle \left(\sum_{i \in {\cal S}} p_i\right)^2},\\
   {\tt ERRY2} & = {\rm var}(\overline{y}) =
   & \frac{\displaystyle \sum_{i \in {\cal S}} \sigma^2_i (y_i-\overline{y})^2}
   {\displaystyle \left(\sum_{i \in {\cal S}} p_i\right)^2},\\
   {\tt ERRXY} & = {\rm cov}(\overline{x},\overline{y}) =
   & \frac{\displaystyle \sum_{i \in {\cal S}} \sigma^2_i (x_i-\overline{x})(y_i-\overline{y})}
   {\displaystyle \left(\sum_{i \in {\cal S}} p_i\right)^2}.
   \end{eqnarray}
250
251
252

:math:`\sigma_i` is the flux uncertainty estimated for pixel :math:`i`:

253
.. math:: \sigma^2_i = {\sigma_B}^2_i + \frac{p_i}{g_i},
254

Emmanuel Bertin's avatar
Emmanuel Bertin committed
255
where :math:`{\sigma_B}_i` is the local background noise and :math:`g_i` the local gain — conversion factor — for pixel :math:`i` (see :ref:`effect_of_weighting` for more details). Semi-major axis :param:`ERRA`, semi-minor axis :param:`ERRB`, and position angle :param:`ERRTHETA` of the :math:`1\sigma` position error ellipse are computed from the covariance matrix exactly like for :ref:`basic shape parameters<shape_iso_def>`:
256
257

.. math::
258
  :label: errabtheta
259

260
   \begin{eqnarray}
261
262
263
264
265
266
267
   {\tt ERRA}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       + \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRB}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       - \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   \tan (2{\tt ERRTHETA}) & = & 2 \,\frac{{\rm cov}(\overline{x},\overline{y})}
Emmanuel Bertin's avatar
Emmanuel Bertin committed
268
                       {{\rm var}(\overline{x}) - {\rm var}(\overline{y})}.
269
   \end{eqnarray}
270

271
And the error ellipse parameters are:
272
273

.. math::
274
  :label: errellipse
275

276
   \begin{eqnarray}
277
278
279
280
281
282
283
284
285
286
287
288
   {\tt ERRCXX} & = & \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRB}^2} = \frac{{\rm
   var}(\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRCYY} & = & \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRB}^2} =
   \frac{{\rm var}(\overline{x})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   {\tt ERRCXY} & = & 2 \cos {\tt
   ERRTHETA}\sin {\tt ERRTHETA} \left( \frac{1}{{\tt ERRA}^2} -
   \frac{1}{{\tt ERRB}^2}\right)\\ & = & -2 \frac{{\rm
   cov}(\overline{x},\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
Emmanuel Bertin's avatar
Emmanuel Bertin committed
289
   {\rm cov}^2(\overline{x},\overline{y})}.
290
   \end{eqnarray}
291

292

293
294
295
Handling of “infinitely thin” detections
----------------------------------------

Emmanuel Bertin's avatar
Emmanuel Bertin committed
296
297
Apart from the mathematical singularities that can be found in some of the above equations describing shape parameters (and which |SExtractor| is able to handle, of course), some detections with very specific shapes may yield unphysical parameters, namely null values for :param:`B`, :param:`ERRB`, or even :param:`A` and :param:`ERRA`. 
Such detections include single-pixel objects and horizontal, vertical or diagonal lines which are 1-pixel wide. They will generally originate from glitches; but strongly undersampled and/or low S/N genuine sources may also produce such shapes.
298
299
300
301
302
303

For basic shape parameters, the following convention was adopted: if the
light distribution of the object falls on one single pixel, or lies on a
sufficiently thin line of pixels, which we translate mathematically by

.. math::
304
  :label: singutest
305
306
307

   \overline{x^2}\,\overline{y^2} - \overline{xy}^2 < \rho^2,

Emmanuel Bertin's avatar
Emmanuel Bertin committed
308
309
then :math:`\overline{x^2}` and :math:`\overline{y^2}` are incremented by :math:`\rho`. |SExtractor| sets :math:`\rho=1/12`, which is the variance of a 1-dimensional top-hat distribution with unit width.
Therefore :math:`1/\sqrt{12}` represents the typical minor-axis values assigned (in pixels units) to undersampled sources in |SExtractor|.
310

Emmanuel Bertin's avatar
Emmanuel Bertin committed
311
Positional errors are more difficult to handle, as objects with very high signal-to-noise can yield extremely small position uncertainties, just like singular profiles do. Therefore |SExtractor| first checks that :eq:`singutest` is true. If this is the case, a new test is conducted:
312
313

.. math::
314
  :label: singutest2
315
316
317
318

   {\rm var}(\overline{x})\,{\rm var}(\overline{y}) - {\rm
   covar}^2(\overline{x}, \overline{y}) < \rho^2_e,

319
where :math:`\rho_e` is arbitrarily set to :math:`\left( \sum_{i \in {\cal S}} \sigma^2_i \right) / \left(\sum_{i \in {\cal S}} p_i\right)^2`.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
320
If :eq:`singutest2` is true, then :math:`\overline{x^2}` and :math:`\overline{y^2}` are incremented by :math:`\rho_e`.
321

Emmanuel Bertin's avatar
Emmanuel Bertin committed
322
.. [#elongation] These parameters are dimensionless, and for historical reasons do not accept suffixes such as :param:`_IMAGE` or :param:`_WORLD`.
323