MockObject.py 30.4 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import os
import galsim
import numpy as np
import astropy.constants as cons
from astropy import wcs
from astropy.table import Table
import astropy.io.fits as fitsio

from observation_sim.mock_objects._util import magToFlux, VC_A, convolveGaussXorders, convolveImg
from observation_sim.mock_objects._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, \
    getABMAG
from observation_sim.mock_objects.SpecDisperser import SpecDisperser

14
15
from observation_sim.instruments.chip import chip_utils

Fang Yuedong's avatar
Fang Yuedong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

class MockObject(object):
    def __init__(self, param, logger=None):
        self.param = param
        for key in self.param:
            setattr(self, key, self.param[key])

        if self.param["star"] == 0:
            self.type = "galaxy"
        elif self.param["star"] == 1:
            self.type = "star"
        elif self.param["star"] == 2:
            self.type = "quasar"
        # mock_stamp_START
        elif self.param["star"] == 3:
            self.type = "stamp"
        # mock_stamp_END
        # for calibration
        elif self.param["star"] == 4:
            self.type = "calib"
        # END

        self.sed = None
        self.fd_shear = None
        # Place holder for outputs
        self.additional_output_str = ""
        self.logger = logger

    def getMagFilter(self, filt):
        if filt.filter_type in ["GI", "GV", "GU"]:
            return self.param["mag_use_normal"]
        return self.param["mag_%s" % filt.filter_type.lower()]

    def getFluxFilter(self, filt):
        return self.param["flux_%s" % filt.filter_type.lower()]

    def getNumPhotons(self, flux, tel, exptime=150.):
        pupil_area = tel.pupil_area * (100.) ** 2  # m^2 to cm^2
        return flux * pupil_area * exptime

    def getElectronFluxFilt(self, filt, tel, exptime=150.):
        # photonEnergy = filt.getPhotonE()
        # flux = magToFlux(self.getMagFilter(filt))
        # factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
        # return factor * filt.efficiency * tel.pupil_area * exptime
        flux = self.getFluxFilter(filt)
        return flux * tel.pupil_area * exptime

64
65
66
    def getPosWorld(self, ra_offset=0., dec_offset=0.):
        ra = self.param["ra"] + ra_offset
        dec = self.param["dec"] + dec_offset
Fang Yuedong's avatar
Fang Yuedong committed
67
68
        return galsim.CelestialCoord(ra=ra * galsim.degrees, dec=dec * galsim.degrees)

69
70
    def getPosImg_Offset_WCS(self, img, fdmodel=None, chip=None, verbose=True, chip_wcs=None, img_header=None, ra_offset=0., dec_offset=0.):
        self.posImg = img.wcs.toImage(self.getPosWorld(ra_offset, dec_offset))
Fang Yuedong's avatar
Fang Yuedong committed
71
72
73
74
75
76
77
78
79
80
        self.localWCS = img.wcs.local(self.posImg)
        # Apply field distortion model
        if (fdmodel is not None) and (chip is not None):
            if verbose:
                print("\n")
                print("Before field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)
            self.posImg, self.fd_shear = fdmodel.get_distorted(
                chip=chip, pos_img=self.posImg)
81
82
            if self.posImg is None:
                return None, None, None, None, None
Fang Yuedong's avatar
Fang Yuedong committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            if verbose:
                print("After field distortion:\n")
                print("x = %.2f, y = %.2f\n" %
                      (self.posImg.x, self.posImg.y), flush=True)

        x, y = self.posImg.x + 0.5, self.posImg.y + 0.5
        self.x_nominal = int(np.floor(x + 0.5))
        self.y_nominal = int(np.floor(y + 0.5))
        dx = x - self.x_nominal
        dy = y - self.y_nominal
        self.offset = galsim.PositionD(dx, dy)

        # Deal with chip rotation
        if chip_wcs is not None:
            self.chip_wcs = chip_wcs
        elif img_header is not None:
            self.chip_wcs = galsim.FitsWCS(header=img_header)
        else:
            self.chip_wcs = None

        return self.posImg, self.offset, self.localWCS, self.chip_wcs, self.fd_shear

    def getRealPos(self, img, global_x=0., global_y=0., img_real_wcs=None):
        img_global_pos = galsim.PositionD(global_x, global_y)
        cel_pos = img.wcs.toWorld(img_global_pos)
        realPos = img_real_wcs.toImage(cel_pos)
        return realPos

    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                          exptime=150., fd_shear=None):
Zhang Xin's avatar
pep8    
Zhang Xin committed
113
        if nphotons_tot is None:
Fang Yuedong's avatar
Fang Yuedong committed
114
115
116
117
118
119
120
121
122
123
124
125
126
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None
        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
127
            folding_threshold = 5.e-8
Fang Yuedong's avatar
Fang Yuedong committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # nphotons_sum += nphotons
            # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))

            # Get PSF model
165
166
167
            EXTRA = False
            if self.getMagFilter(filt) <= filt.mag_saturation-1.:
                EXTRA = True
Fang Yuedong's avatar
Fang Yuedong committed
168
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
169
                                               folding_threshold=folding_threshold, extrapolate=EXTRA)
Fang Yuedong's avatar
Fang Yuedong committed
170
171
172
173
174
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(nphotons)
            # star = galsim.Convolve(psf, star)
            star = psf.withFlux(nphotons)

175
            stamp = star.drawImage(method='no_pixel', wcs=chip_wcs_local, offset=offset)
Fang Yuedong's avatar
Fang Yuedong committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            if np.sum(np.isnan(stamp.array)) > 0:
                continue
            stamp.setCenter(x_nominal, y_nominal)
            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() > 0:
                chip.img.setOrigin(0, 0)
                chip.img[bounds] += stamp[bounds]
                is_updated = 1
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                del stamp

        if is_updated == 0:
            # Return code 0: object has missed this detector
            print("obj %s missed" % (self.id))
            if self.logger:
                self.logger.info("obj %s missed" % (self.id))
            return 0, pos_shear
        return 1, pos_shear  # Return code 1: draw sucesss

    def addSLStoChipImage(self, sdp=None, chip=None, xOrderSigPlus=None, local_wcs=None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            #########################################################
            # DEBUG
            #########################################################
            # print("before convolveGaussXorders, img_s:", img_s)
204
205
206
207
208
            # nan_ids = np.isnan(img_s)
            # if img_s[nan_ids].shape[0] > 0:
            #     # img_s[nan_ids] = 0
            #     print("DEBUG: before convolveGaussXorders specImg nan num is",
            #           img_s[nan_ids].shape[0])
Fang Yuedong's avatar
Fang Yuedong committed
209
            #########################################################
210
211
            # img_s, orig_off = convolveGaussXorders(img_s, xOrderSigPlus[k])
            orig_off = 0
Fang Yuedong's avatar
Fang Yuedong committed
212
213
214
215
216
217
            origin_order_x = v[1] - orig_off
            origin_order_y = v[2] - orig_off
            #########################################################
            # DEBUG
            #########################################################
            # print("DEBUG: orig_off is", orig_off)
218
219
220
221
            # nan_ids = np.isnan(img_s)
            # if img_s[nan_ids].shape[0] > 0:
            #     img_s[nan_ids] = 0
            #     print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
Fang Yuedong's avatar
Fang Yuedong committed
222
            #########################################################
223
            stamp = galsim.ImageF(img_s)
Fang Yuedong's avatar
Fang Yuedong committed
224
225
226
227
228
229
230
231
            stamp.wcs = local_wcs
            stamp.setOrigin(origin_order_x, origin_order_y)

            bounds = stamp.bounds & galsim.BoundsI(
                0, chip.npix_x - 1, 0, chip.npix_y - 1)
            if bounds.area() == 0:
                continue
            chip.img.setOrigin(0, 0)
232
            chip.img[bounds] = chip.img[bounds]+stamp[bounds]
Fang Yuedong's avatar
Fang Yuedong committed
233
234
235
236
237
238
            chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
            del stamp
        del spec_orders

    def addSLStoChipImageWithPSF(self, sdp=None, chip=None, pos_img_local=[1, 1], psf_model=None, bandNo=1, grating_split_pos=3685, local_wcs=None, pos_img=None):
        spec_orders = sdp.compute_spec_orders()
239
240
241
242
        pos_shear = galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
        if chip.slsPSFOptim:
            for k, v in spec_orders.items():
                img_s = v[0]
Zhang Xin's avatar
pep8    
Zhang Xin committed
243

244
245
246
247
248
249
                nan_ids = np.isnan(img_s)
                if img_s[nan_ids].shape[0] > 0:
                    img_s[nan_ids] = 0
                    print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                #########################################################
                # img_s, orig_off = convolveImg(img_s, psf_img_m)
Zhang Xin's avatar
pep8    
Zhang Xin committed
250
                orig_off = [0, 0]
251
252
253
254
255
256
257
258
259
260
261
262
263
264
                origin_order_x = v[1] - orig_off[0]
                origin_order_y = v[2] - orig_off[1]

                specImg = galsim.ImageF(img_s)

                specImg.wcs = local_wcs
                specImg.setOrigin(origin_order_x, origin_order_y)

                bounds = specImg.bounds & galsim.BoundsI(
                    0, chip.npix_x - 1, 0, chip.npix_y - 1)
                if bounds.area() == 0:
                    continue

                # orders = {'A': 'order1', 'B': 'order0', 'C': 'order2', 'D': 'order-1', 'E': 'order-2'}
Zhang Xin's avatar
pep8    
Zhang Xin committed
265
266
                orders = {'A': 'order1', 'B': 'order0',
                          'C': 'order0', 'D': 'order0', 'E': 'order0'}
267
268
269
270
                gratingN = chip_utils.getChipSLSGratingID(chip.chipID)[1]
                if pos_img_local[0] < grating_split_pos:
                    gratingN = chip_utils.getChipSLSGratingID(chip.chipID)[0]

Zhang Xin's avatar
pep8    
Zhang Xin committed
271
272
273
274
275
276
                chip.img_stack[gratingN][orders[k]
                                         ]['w' + str(bandNo)].setOrigin(0, 0)
                chip.img_stack[gratingN][orders[k]]['w' + str(
                    bandNo)][bounds] = chip.img_stack[gratingN][orders[k]]['w' + str(bandNo)][bounds] + specImg[bounds]
                chip.img_stack[gratingN][orders[k]]['w' +
                                                    str(bandNo)].setOrigin(chip.bound.xmin, chip.bound.ymin)
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        else:
            for k, v in spec_orders.items():
                # img_s = v[0]
                # # print(bandNo,k)
                # try:
                #     psf, pos_shear = psf_model.get_PSF(
                #         chip, pos_img_local=pos_img_local, bandNo=bandNo, galsimGSObject=True, g_order=k, grating_split_pos=grating_split_pos)
                # except:
                #     psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)

                # psf_img = psf.drawImage(nx=100, ny=100, wcs=local_wcs)

                # psf_img_m = psf_img.array

                # #########################################################
                # # DEBUG
                # #########################################################
                # # ids_p = psf_img_m < 0
                # # psf_img_m[ids_p] = 0

                # # from astropy.io import fits
                # # fits.writeto(str(bandNo) + '_' + str(k) + '_psf.fits', psf_img_m)

                # # print("DEBUG: orig_off is", orig_off)
                # nan_ids = np.isnan(img_s)
                # if img_s[nan_ids].shape[0] > 0:
                #     img_s[nan_ids] = 0
                #     print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                # #########################################################
                # img_s, orig_off = convolveImg(img_s, psf_img_m)
                # origin_order_x = v[1] - orig_off[0]
                # origin_order_y = v[2] - orig_off[1]

                # specImg = galsim.ImageF(img_s)
                # # photons = galsim.PhotonArray.makeFromImage(specImg)
                # # photons.x += origin_order_x
                # # photons.y += origin_order_y

                # # xlen_imf = int(specImg.xmax - specImg.xmin + 1)
                # # ylen_imf = int(specImg.ymax - specImg.ymin + 1)
                # # stamp = galsim.ImageF(xlen_imf, ylen_imf)
                # # stamp.wcs = local_wcs
                # # stamp.setOrigin(origin_order_x, origin_order_y)

                # specImg.wcs = local_wcs
                # specImg.setOrigin(origin_order_x, origin_order_y)
Zhang Xin's avatar
pep8    
Zhang Xin committed
324

325
                # print('DEBUG: BEGIN -----------',bandNo,k)
Zhang Xin's avatar
pep8    
Zhang Xin committed
326

327
                img_s = v[0]
Zhang Xin's avatar
pep8    
Zhang Xin committed
328

329
330
331
332
333
334
335
336
337
338
339
340
                nan_ids = np.isnan(img_s)
                if img_s[nan_ids].shape[0] > 0:
                    img_s[nan_ids] = 0
                    print("DEBUG: specImg nan num is", img_s[nan_ids].shape[0])
                #########################################################
                origin_order_x = v[1]
                origin_order_y = v[2]
                specImg = galsim.ImageF(img_s)

                specImg.wcs = local_wcs
                specImg.setOrigin(origin_order_x, origin_order_y)
                try:
Zhang Xin's avatar
pep8    
Zhang Xin committed
341
342
                    specImg = psf_model.get_PSF_AND_convolve_withsubImg(
                        chip, cutImg=specImg, pos_img_local=pos_img_local, bandNo=bandNo, g_order=k, grating_split_pos=grating_split_pos)
343
                except:
Zhang Xin's avatar
pep8    
Zhang Xin committed
344
345
                    psf, pos_shear = psf_model.get_PSF(
                        chip=chip, pos_img=pos_img)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

                    psf_img = psf.drawImage(nx=100, ny=100, wcs=local_wcs)

                    psf_img_m = psf_img.array

                    img_s, orig_off = convolveImg(img_s, psf_img_m)
                    origin_order_x = v[1] - orig_off[0]
                    origin_order_y = v[2] - orig_off[1]

                    specImg = galsim.ImageF(img_s)

                    specImg.wcs = local_wcs
                    specImg.setOrigin(origin_order_x, origin_order_y)

                bounds = specImg.bounds & galsim.BoundsI(
                    0, chip.npix_x - 1, 0, chip.npix_y - 1)
                if bounds.area() == 0:
                    continue
                chip.img.setOrigin(0, 0)
                chip.img[bounds] = chip.img[bounds] + specImg[bounds]
                # stamp[bounds] = chip.img[bounds]
                # # chip.sensor.accumulate(photons, stamp)
                # chip.img[bounds] = stamp[bounds]
                chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
                # del stamp
Fang Yuedong's avatar
Fang Yuedong committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        del spec_orders
        return pos_shear

    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                         exptime=150., normFilter=None, grating_split_pos=3685, fd_shear=None):
        if normFilter is not None:
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                          norm_thr=normFilter,
                                                          sWave=np.floor(
                                                              normFilter[norm_thr_rang_ids][0][0]),
                                                          eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            if sedNormFactor == 0:
                return 2, None
        else:
            sedNormFactor = 1.

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)

        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)

        chip_wcs_local = self.chip_wcs.local(self.real_pos)

        flat_cube = chip.flat_cube

        xOrderSigPlus = {'A': 1.3909419820029296, 'B': 1.4760376591236062, 'C': 4.035447379743442,
                         'D': 5.5684364343742825, 'E': 16.260021029735388}
        grating_split_pos_chip = 0 + grating_split_pos

        branges = np.zeros([len(bandpass_list), 2])

        if hasattr(psf_model, 'bandranges'):
            if psf_model.bandranges is None:
                return 2, None
            if len(psf_model.bandranges) != len(bandpass_list):
                return 2, None
            branges = psf_model.bandranges
        else:
            for i in range(len(bandpass_list)):
                branges[i, 0] = bandpass_list[i].blue_limit * 10
                branges[i, 1] = bandpass_list[i].red_limit * 10

        for i in range(len(bandpass_list)):
            # bandpass = bandpass_list[i]
            brange = branges[i]

            # psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
            #                                    folding_threshold=folding_threshold)

435
436
437
            # star = galsim.DeltaFunction(gsparams=gsp)
            # star = star.withFlux(tel.pupil_area * exptime)

Zhang Xin's avatar
pep8    
Zhang Xin committed
438
            # psf list :["A","B","C","D","E"]
439
440
            starImg_List = []
            try:
Zhang Xin's avatar
pep8    
Zhang Xin committed
441
                pos_img_local = [0, 0]
442
443
444
445
446
447
                x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
                y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
                pos_img_local[0] = pos_img.x - x_start
                pos_img_local[1] = pos_img.y - y_start
                nnx = 0
                nny = 0
Zhang Xin's avatar
pep8    
Zhang Xin committed
448
                for order in ["A", "B"]:
449
450
451
                    psf, pos_shear = psf_model.get_PSF(
                        chip, pos_img_local=pos_img_local, bandNo=i+1, galsimGSObject=True, g_order=order, grating_split_pos=grating_split_pos)
                    # star_p = galsim.Convolve(psf, star)
Zhang Xin's avatar
pep8    
Zhang Xin committed
452
                    star_p = psf.withFlux(tel.pupil_area * exptime)
453
                    if nnx == 0:
Zhang Xin's avatar
pep8    
Zhang Xin committed
454
455
                        starImg = star_p.drawImage(
                            wcs=chip_wcs_local, offset=offset)
456
457
458
                        nnx = starImg.xmax - starImg.xmin + 1
                        nny = starImg.ymax - starImg.ymin + 1
                    else:
Zhang Xin's avatar
pep8    
Zhang Xin committed
459
460
                        starImg = star_p.drawImage(
                            nx=nnx, ny=nny, wcs=chip_wcs_local, offset=offset)
461
462
463
464
465
466
                    # n1 = np.sum(np.isinf(starImg.array))
                    # n2 = np.sum(np.isnan(starImg.array))
                    # if n1>0 or n2 > 0:
                    #     print("DEBUG: MockObject, inf:%d, nan:%d"%(n1, n2))
                    starImg.setOrigin(0, 0)
                    starImg_List.append(starImg)
Zhang Xin's avatar
pep8    
Zhang Xin committed
467
                for order in ["C", "D", "E"]:
468
469
470
471
                    starImg_List.append(starImg)
            except:
                psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img)
                # star_p = galsim.Convolve(psf, star)
Zhang Xin's avatar
pep8    
Zhang Xin committed
472
                star_p = psf.withFlux(tel.pupil_area * exptime)
473
474
                starImg = star_p.drawImage(wcs=chip_wcs_local, offset=offset)
                starImg.setOrigin(0, 0)
Zhang Xin's avatar
pep8    
Zhang Xin committed
475
                for order in ["A", "B", "C", "D", "E"]:
476
477
478
479
480
481
482
                    starImg_List.append(starImg)

            # psf_tmp = galsim.Gaussian(sigma=0.002)
            # star = galsim.Convolve(psf_tmp, star)

            # starImg = star.drawImage(
            #     nx=60, ny=60, wcs=chip_wcs_local, offset=offset)
Fang Yuedong's avatar
Fang Yuedong committed
483
484
485

            origin_star = [y_nominal - (starImg.center.y - starImg.ymin),
                           x_nominal - (starImg.center.x - starImg.xmin)]
Zhang Xin's avatar
pep8    
Zhang Xin committed
486

Fang Yuedong's avatar
Fang Yuedong committed
487
488
489
490
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] -
                       1, origin_star[1] + starImg.array.shape[1] - 1]
            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
491
                subSlitPos = int(grating_split_pos_chip - gal_origin[1])
Fang Yuedong's avatar
Fang Yuedong committed
492
                # part img disperse
Zhang Xin's avatar
pep8    
Zhang Xin committed
493
                star_p1s = []
494
                for starImg in starImg_List:
Fang Yuedong's avatar
Fang Yuedong committed
495

496
497
498
499
                    subImg_p1 = starImg.array[:, 0:subSlitPos]
                    star_p1 = galsim.Image(subImg_p1)
                    star_p1.setOrigin(0, 0)
                    star_p1s.append(star_p1)
Fang Yuedong's avatar
Fang Yuedong committed
500
501
502
503
                origin_p1 = origin_star
                xcenter_p1 = min(x_nominal, grating_split_pos_chip - 1) - 0
                ycenter_p1 = y_nominal - 0

504
                sdp_p1 = SpecDisperser(orig_img=star_p1s, xcenter=xcenter_p1,
Fang Yuedong's avatar
Fang Yuedong committed
505
506
507
508
509
510
511
                                       ycenter=ycenter_p1, origin=origin_p1,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[0],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

Zhang Xin's avatar
pep8    
Zhang Xin committed
512
513
                self.addSLStoChipImage(
                    sdp=sdp_p1, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
514
515
516
517
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p1, chip=chip, pos_img_local=[xcenter_p1, ycenter_p1],
                #                                           psf_model=psf_model, bandNo=i+1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)

Zhang Xin's avatar
pep8    
Zhang Xin committed
518
                star_p2s = []
519
                for starImg in starImg_List:
Fang Yuedong's avatar
Fang Yuedong committed
520

521
                    subImg_p2 = starImg.array[:,
Zhang Xin's avatar
pep8    
Zhang Xin committed
522
                                              subSlitPos:starImg.array.shape[1]]
523
524
525
                    star_p2 = galsim.Image(subImg_p2)
                    star_p2.setOrigin(0, 0)
                    star_p2s.append(star_p2)
Fang Yuedong's avatar
Fang Yuedong committed
526
                origin_p2 = [origin_star[0], grating_split_pos_chip]
527
                xcenter_p2 = max(x_nominal, grating_split_pos_chip) - 0
Fang Yuedong's avatar
Fang Yuedong committed
528
529
                ycenter_p2 = y_nominal - 0

530
                sdp_p2 = SpecDisperser(orig_img=star_p2s, xcenter=xcenter_p2,
Fang Yuedong's avatar
Fang Yuedong committed
531
532
533
534
535
536
537
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
                                       band_start=brange[0], band_end=brange[1],
                                       conf=chip.sls_conf[1],
                                       isAlongY=0,
                                       flat_cube=flat_cube)

Zhang Xin's avatar
pep8    
Zhang Xin committed
538
539
                self.addSLStoChipImage(
                    sdp=sdp_p2, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
540
541
542
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp_p2, chip=chip, pos_img_local=[xcenter_p2, ycenter_p2],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
543
544
545
546

                del sdp_p1
                del sdp_p2
            elif grating_split_pos_chip <= gal_origin[1]:
547
                sdp = SpecDisperser(orig_img=starImg_List, xcenter=x_nominal - 0,
Fang Yuedong's avatar
Fang Yuedong committed
548
549
550
551
552
553
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[1],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
Zhang Xin's avatar
pep8    
Zhang Xin committed
554
555
                self.addSLStoChipImage(
                    sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
556
557
558
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
559
560
                del sdp
            elif grating_split_pos_chip >= gal_end[1]:
561
                sdp = SpecDisperser(orig_img=starImg_List, xcenter=x_nominal - 0,
Fang Yuedong's avatar
Fang Yuedong committed
562
563
564
565
566
567
                                    ycenter=y_nominal - 0, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=brange[0], band_end=brange[1],
                                    conf=chip.sls_conf[0],
                                    isAlongY=0,
                                    flat_cube=flat_cube)
Zhang Xin's avatar
pep8    
Zhang Xin committed
568
569
                self.addSLStoChipImage(
                    sdp=sdp, chip=chip, xOrderSigPlus=xOrderSigPlus, local_wcs=chip_wcs_local)
570
571
572
                # pos_shear = self.addSLStoChipImageWithPSF(sdp=sdp, chip=chip, pos_img_local=[x_nominal, y_nominal],
                #                                           psf_model=psf_model, bandNo=i + 1, grating_split_pos=grating_split_pos,
                #                                           local_wcs=chip_wcs_local, pos_img=pos_img)
Fang Yuedong's avatar
Fang Yuedong committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                del sdp
            # del psf
        return 1, pos_shear

    def SNRestimate(self, img_obj, flux, noise_level=0.0, seed=31415):
        img_flux = img_obj.added_flux
        stamp = img_obj.copy() * 0.0
        rng = galsim.BaseDeviate(seed)
        gaussianNoise = galsim.GaussianNoise(rng, sigma=noise_level)
        stamp.addNoise(gaussianNoise)
        sig_obj = np.std(stamp.array)
        snr_obj = img_flux / sig_obj
        return snr_obj

    def drawObj_PSF(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
                    exptime=150., fd_shear=None, chip_output=None):
Zhang Xin's avatar
pep8    
Zhang Xin committed
589
        if nphotons_tot is None:
Fang Yuedong's avatar
Fang Yuedong committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(
                sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            if self.logger:
                self.logger.error(e)
            return 2, None

        # Set Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        # Get real image position of object (deal with chip rotation w.r.t its center)
        self.real_pos = self.getRealPos(chip.img, global_x=self.posImg.x, global_y=self.posImg.y,
                                        img_real_wcs=self.chip_wcs)
        x, y = self.real_pos.x + 0.5, self.real_pos.y + 0.5
        x_nominal = int(np.floor(x + 0.5))
        y_nominal = int(np.floor(y + 0.5))
        dx = x - x_nominal
        dy = y - y_nominal
        offset = galsim.PositionD(dx, dy)
        # Get real local wcs of object (deal with chip rotation w.r.t its center)
        chip_wcs_local = self.chip_wcs.local(self.real_pos)
        is_updated = 0

        # Loop over all sub-bandpasses
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                if self.logger:
                    self.logger.error(e)
                continue
            ratio = sub / full
            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                continue

            # Get PSF model
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
                                               folding_threshold=folding_threshold)
            star_temp = psf.withFlux(nphotons)

            if i == 0:
                star = star_temp
            else:
                star = star+star_temp

        pixelScale = 0.074
        stamp = star.drawImage(wcs=chip_wcs_local, offset=offset)
        # stamp = star.drawImage(nx=256, ny=256, scale=pixelScale)
        if np.sum(np.isnan(stamp.array)) > 0:
            return None

        fn = chip_output.subdir + "/psfIDW"
        os.makedirs(fn, exist_ok=True)
        fn = fn + "/ccd_{:}".format(chip.chipID) + \
            "_psf_"+str(self.param['id'])+".fits"
Zhang Xin's avatar
pep8    
Zhang Xin committed
658
        if fn is not None:
Fang Yuedong's avatar
Fang Yuedong committed
659
660
661
662
663
664
665
666
667
668
669
            if os.path.exists(fn):
                os.remove(fn)
        hdu = fitsio.PrimaryHDU()
        hdu.data = stamp.array
        hdu.header.set('name',      self.type)
        hdu.header.set('pixScale',  pixelScale)
        hdu.header.set('objID',     self.param['id'])
        hdu.writeto(fn)

        del stamp
        return None