PSFInterpSLS.py 32.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
'''
PSF interpolation for CSST-Sim

NOTE: [iccd, iwave, ipsf] are counted from 1 to n, but [tccd, twave, tpsf] are counted from 0 to n-1
'''

import yaml
import sys
import time
import copy
import numpy as np
import scipy.spatial as spatial
import galsim
import h5py

from observation_sim.instruments import Filter, FilterParam, Chip
Fang Yuedong's avatar
Fang Yuedong committed
17
from observation_sim.psf.PSFModel import PSFModel
Fang Yuedong's avatar
Fang Yuedong committed
18
19
20
21
22
from observation_sim.instruments.chip import chip_utils
import os
from astropy.io import fits

from astropy.modeling.models import Gaussian2D
Zhang Xin's avatar
Zhang Xin committed
23
24
25
from scipy import signal, interpolate
import datetime
import gc
26
27
28
from astropy.io import fits

from observation_sim.psf._util import psf_extrapolate, psf_extrapolate1
Zhang Xin's avatar
Zhang Xin committed
29
# from jax import numpy as jnp
Fang Yuedong's avatar
Fang Yuedong committed
30
31
32
33
34
35

LOG_DEBUG = False  # ***#
NPSF = 900  # ***# 30*30
PIX_SIZE_MICRON = 5.  # ***# in microns


Zhang Xin's avatar
pep8    
Zhang Xin committed
36
# find neighbors-KDtree
Fang Yuedong's avatar
Fang Yuedong committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
#     """
#     find nearest neighbors by 2D-KDTree
#
#     Parameters:
#         tx, ty (float, float): a given position
#         px, py (numpy.array, numpy.array): position data for tree
#         dr (float-optional): distance
#         dn (int-optional): nearest-N
#         OnlyDistance (bool-optional): only use distance to find neighbors. Default: True
#
#     Returns:
#         dataq (numpy.array): index
#     """
#     datax = px
#     datay = py
#     tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))
#
#     dataq=[]
#     rr = dr
#     if OnlyDistance == True:
#         dataq = tree.query_ball_point([tx, ty], rr)
#     if OnlyDistance == False:
#         while len(dataq) < dn:
#             dataq = tree.query_ball_point([tx, ty], rr)
#             rr += dr
#         dd = np.hypot(datax[dataq]-tx, datay[dataq]-ty)
#         ddSortindx = np.argsort(dd)
#         dataq = np.array(dataq)[ddSortindx[0:dn]]
#     return dataq
#
# ###find neighbors-hoclist###
# def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
#     if np.max(partx) > nhocx*dhocx:
#         print('ERROR')
#         sys.exit()
#     if np.max(party) > nhocy*dhocy:
#         print('ERROR')
#         sys.exit()
#
#     npart  = partx.size
#     hoclist= np.zeros(npart, dtype=np.int32)-1
#     hoc = np.zeros([nhocy, nhocx], dtype=np.int32)-1
#     for ipart in range(npart):
#         ix = int(partx[ipart]/dhocx)
#         iy = int(party[ipart]/dhocy)
#         hoclist[ipart] = hoc[iy, ix]
#         hoc[iy, ix] = ipart
#     return hoc, hoclist
#
# def hocFind(px, py, dhocx, dhocy, hoc, hoclist):
#     ix = int(px/dhocx)
#     iy = int(py/dhocy)
#
#     neigh=[]
#     it = hoc[iy, ix]
#     while it != -1:
#         neigh.append(it)
#         it = hoclist[it]
#     return neigh
#
# def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None):
#     nhocy = nhocx = 20
#
#     pxMin = np.min(px)
#     pxMax = np.max(px)
#     pyMin = np.min(py)
#     pyMax = np.max(py)
#
#     dhocx = (pxMax - pxMin)/(nhocx-1)
#     dhocy = (pyMax - pyMin)/(nhocy-1)
#     partx = px - pxMin +dhocx/2
#     party = py - pyMin +dhocy/2
#
#     if hoc is None:
#         hoc, hoclist = hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy)
#         return hoc, hoclist
#
#     if hoc is not None:
#         tx = tx - pxMin +dhocx/2
#         ty = ty - pyMin +dhocy/2
#         itx = int(tx/dhocx)
#         ity = int(ty/dhocy)
#
#         ps = [-1, 0, 1]
#         neigh=[]
#         for ii in range(3):
#             for jj in range(3):
#                 ix = itx + ps[ii]
#                 iy = ity + ps[jj]
#                 if ix < 0:
#                     continue
#                 if iy < 0:
#                     continue
#                 if ix > nhocx-1:
#                     continue
#                 if iy > nhocy-1:
#                     continue
#
#                 #neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
#                 it = hoc[iy, ix]
#                 while it != -1:
#                     neigh.append(it)
#                     it = hoclist[it]
#                 #neigh.append(neightt)
#         #ll = [i for k in neigh for i in k]
#         if dn != -1:
#             ptx = np.array(partx[neigh])
#             pty = np.array(party[neigh])
#             dd  = np.hypot(ptx-tx, pty-ty)
#             idx = np.argsort(dd)
#             neigh= np.array(neigh)[idx[0:dn]]
#         return neigh
#
#
# ###PSF-IDW###
# def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=None, hoclist=None, PSFCentroidWgt=False):
#     """
#     psf interpolation by IDW
#
#     Parameters:
#         px, py (float, float): position of the target
#         PSFMat (numpy.array): image
#         cen_col, cen_row (numpy.array, numpy.array): potions of the psf centers
#         IDWindex (int-optional): the power index of IDW
#         OnlyNeighbors (bool-optional): only neighbors are used for psf interpolation
#
#     Returns:
#         psfMaker (numpy.array)
#     """
#
#     minimum_psf_weight = 1e-8
#     ref_col = px
#     ref_row = py
#
#     ngy, ngx = PSFMat[0, :, :].shape
#     npsf = PSFMat[:, :, :].shape[0]
#     psfWeight = np.zeros([npsf])
#
#     if OnlyNeighbors == True:
#         if hoc is None:
#             neigh = findNeighbors(px, py, cen_col, cen_row, dr=5., dn=4, OnlyDistance=False)
#         if hoc is not None:
#             neigh = findNeighbors_hoclist(cen_col, cen_row, tx=px,ty=py, dn=4, hoc=hoc, hoclist=hoclist)
#
#         neighFlag = np.zeros(npsf)
#         neighFlag[neigh] = 1
#
#     for ipsf in range(npsf):
#         if OnlyNeighbors == True:
#             if neighFlag[ipsf] != 1:
#                 continue
#
#         dist = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
#         if IDWindex == 1:
#             psfWeight[ipsf] = dist
#         if IDWindex == 2:
#             psfWeight[ipsf] = dist**2
#         if IDWindex == 3:
#             psfWeight[ipsf] = dist**3
#         if IDWindex == 4:
#             psfWeight[ipsf] = dist**4
#         psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
#         psfWeight[ipsf] = 1./psfWeight[ipsf]
#     psfWeight /= np.sum(psfWeight)
#
#     psfMaker  = np.zeros([ngy, ngx], dtype=np.float32)
#     for ipsf in range(npsf):
#         if OnlyNeighbors == True:
#             if neighFlag[ipsf] != 1:
#                 continue
#
#         iPSFMat = PSFMat[ipsf, :, :].copy()
#         ipsfWeight = psfWeight[ipsf]
#
#         psfMaker += iPSFMat * ipsfWeight
#     psfMaker /= np.nansum(psfMaker)
#
#     return psfMaker


Zhang Xin's avatar
pep8    
Zhang Xin committed
218
# define PSFInterp
Fang Yuedong's avatar
Fang Yuedong committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
class PSFInterpSLS(PSFModel):
    def __init__(self, chip, filt, PSF_data_prefix="", sigSpin=0, psfRa=0.15, pix_size=0.005):
        if LOG_DEBUG:
            print('===================================================')
            print('DEBUG: psf module for csstSim '
                  + time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
            print('===================================================')

        self.sigSpin = sigSpin
        self.sigGauss = psfRa
        self.grating_ids = chip_utils.getChipSLSGratingID(chip.chipID)
        _, self.grating_type = chip.getChipFilter(chipID=chip.chipID)
        self.data_folder = PSF_data_prefix
        self.getPSFDataFromFile(filt)
        self.pixsize = pix_size  # um

    def getPSFDataFromFile(self, filt):
        gratingInwavelist = {'GU': 0, 'GV': 1, 'GI': 2}
        grating_orders = ['0', '1']
        waveListFn = self.data_folder + '/wavelist.dat'
        wavelists = np.loadtxt(waveListFn)
        self.waveList = wavelists[:, gratingInwavelist[self.grating_type]]
        bandranges = np.zeros([4, 2])
        midBand = (self.waveList[0:3] + self.waveList[1:4])/2.*10000.
        bandranges[0, 0] = filt.blue_limit
        bandranges[1:4, 0] = midBand
        bandranges[0:3, 1] = midBand
        bandranges[3, 1] = filt.red_limit

        self.bandranges = bandranges

        self.grating1_data = {}
        g_folder = self.data_folder + '/' + self.grating_ids[0] + '/'
        for g_order in grating_orders:
            g_folder_order = g_folder + 'PSF_Order_' + g_order + '/'
            grating_order_data = {}
            for bandi in [1, 2, 3, 4]:
                subBand_data = {}
                subBand_data['bandrange'] = bandranges[bandi-1]
                final_folder = g_folder_order + str(bandi) + '/'
                print(final_folder)
                pca_fs = os.listdir(final_folder)
                for fname in pca_fs:
                    if ('_PCs.fits' in fname) and (fname[0] != '.'):
                        fname_ = final_folder + fname
                        hdu = fits.open(fname_)
                        subBand_data['band_data'] = hdu
                grating_order_data['band'+str(bandi)] = subBand_data
            self.grating1_data['order'+g_order] = grating_order_data

        self.grating2_data = {}
        g_folder = self.data_folder + '/' + self.grating_ids[1] + '/'
        for g_order in grating_orders:
            g_folder_order = g_folder + 'PSF_Order_' + g_order + '/'
            grating_order_data = {}
            for bandi in [1, 2, 3, 4]:
                subBand_data = {}
                subBand_data['bandrange'] = bandranges[bandi - 1]
                final_folder = g_folder_order + str(bandi) + '/'
                print(final_folder)
                pca_fs = os.listdir(final_folder)
                for fname in pca_fs:
                    if ('_PCs.fits' in fname) and (fname[0] != '.'):
                        fname_ = final_folder + fname
                        hdu = fits.open(fname_)
                        subBand_data['band_data'] = hdu
                grating_order_data['band' + str(bandi)] = subBand_data
            self.grating2_data['order' + g_order] = grating_order_data

    #
    #
    #
    # def _getPSFwave(self, iccd, PSF_data_file, PSF_data_prefix):
    #     # fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
    #     fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
    #     nwave = len(fq.keys())
    #     fq.close()
    #     return nwave
    #
    #
    # def _loadPSF(self, iccd, PSF_data_file, PSF_data_prefix):
    #     psfSet = []
    #     # fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
    #     fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
    #     for ii in range(self.nwave):
    #         iwave = ii+1
    #         psfWave = []
    #
    #         fq_iwave = fq['w_{:}'.format(iwave)]
    #         for jj in range(self.npsf):
    #             ipsf = jj+1
    #             psfInfo = {}
    #             psfInfo['wavelength']= fq_iwave['wavelength'][()]
    #
    #             fq_iwave_ipsf = fq_iwave['psf_{:}'.format(ipsf)]
    #             psfInfo['pixsize']   = PIX_SIZE_MICRON
    #             psfInfo['field_x']   = fq_iwave_ipsf['field_x'][()]
    #             psfInfo['field_y']   = fq_iwave_ipsf['field_y'][()]
    #             psfInfo['image_x']   = fq_iwave_ipsf['image_x'][()]
    #             psfInfo['image_y']   = fq_iwave_ipsf['image_y'][()]
    #             psfInfo['centroid_x']= fq_iwave_ipsf['cx'][()]
    #             psfInfo['centroid_y']= fq_iwave_ipsf['cy'][()]
    #             psfInfo['psfMat']    = fq_iwave_ipsf['psfMat'][()]
    #
    #             psfWave.append(psfInfo)
    #         psfSet.append(psfWave)
    #     fq.close()
    #
    #     if LOG_DEBUG:
    #         print('psfSet has been loaded:', flush=True)
    #         print('psfSet[iwave][ipsf][keys]:', psfSet[0][0].keys(), flush=True)
    #     return psfSet
    #
    #
    # def _findWave(self, bandpass):
    #     if isinstance(bandpass,int):
    #         twave = bandpass
    #         return twave
    #
    #     for twave in range(self.nwave):
    #         bandwave = self.PSF_data[twave][0]['wavelength']
    #         if bandpass.blue_limit < bandwave and bandwave < bandpass.red_limit:
    #             return twave
    #     return -1
    #
    #

    def convolveWithGauss(self, img=None, sigma=1):

        offset = int(np.ceil(sigma * 3))
        g_size = 2 * offset + 1
        m_cen = int(g_size / 2)
        print('-----', g_size)
        g_PSF_ = Gaussian2D(1, m_cen, m_cen, sigma, sigma)
        yp, xp = np.mgrid[0:g_size, 0:g_size]
        g_PSF = g_PSF_(xp, yp)
        psf = g_PSF / g_PSF.sum()
        convImg = signal.fftconvolve(img, psf, mode='full', axes=None)
        convImg = convImg/np.sum(convImg)
        return convImg

360
    def get_PSF(self, chip, pos_img_local=[1000, 1000], bandNo=1, galsimGSObject=True, folding_threshold=5.e-3, g_order='A', grating_split_pos=3685, extrapolate=False, ngg=2048):
Fang Yuedong's avatar
Fang Yuedong committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        """
        Get the PSF at a given image position

        Parameters:
            chip: A 'Chip' object representing the chip we want to extract PSF from.
            pos_img: A 'galsim.Position' object representing the image position.
            bandpass: A 'galsim.Bandpass' object representing the wavelength range.
            pixSize: The pixels size of psf matrix
            findNeighMode: 'treeFind' or 'hoclistFind'
        Returns:
            PSF: A 'galsim.GSObject'.
        """
        order_IDs = {'A': '1', 'B': '0', 'C': '0', 'D': '0', 'E': '0'}
        contam_order_sigma = {'C': 0.28032344707964174,
                              'D': 0.39900182912061344, 'E': 1.1988309797685412}  # arcsec
        x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
        y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
        # print(pos_img.x - x_start)
        pos_img_x = pos_img_local[0] + x_start
        pos_img_y = pos_img_local[1] + y_start
        pos_img = galsim.PositionD(pos_img_x, pos_img_y)
        if pos_img_local[0] < grating_split_pos:
            psf_data = self.grating1_data
        else:
            psf_data = self.grating2_data

        grating_order = order_IDs[g_order]
        # if grating_order in ['-2','-1','2']:
        #     grating_order = '1'

        # if grating_order in ['0', '1']:
        psf_order = psf_data['order'+grating_order]
        psf_order_b = psf_order['band'+str(bandNo)]
        psf_b_dat = psf_order_b['band_data']
        pos_p = psf_b_dat[1].data
        pc_coeff = psf_b_dat[2].data
        pcs = psf_b_dat[0].data
        # print(max(pos_p[:,0]), min(pos_p[:,0]),max(pos_p[:,1]), min(pos_p[:,1]))
        # print(chip.x_cen, chip.y_cen)
        # print(pos_p)
        px = pos_img.x*chip.pix_size
        py = pos_img.y*chip.pix_size

        dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + \
            (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
        temp_sort_dist = np.zeros([dist2.shape[0], 2])
        temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
        temp_sort_dist[:, 1] = dist2
        # print(temp_sort_dist)
        dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
        # print(dits2_sortlist)
        nearest4p = np.zeros([4, 2])
        pc_coeff_4p = np.zeros([pc_coeff.data.shape[0], 4])

        for i in np.arange(4):
            smaller_ids = int(dits2_sortlist[i][0])
            nearest4p[i, 0] = pos_p[smaller_ids, 1]
            nearest4p[i, 1] = pos_p[smaller_ids, 0]
            pc_coeff_4p[:, i] = pc_coeff[:, smaller_ids]
        idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
            py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))

        coeff_int = np.zeros(pc_coeff.data.shape[0])
        for i in np.arange(4):
            coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
        coeff_int = coeff_int / np.sum(coeff_int)

        npc = 10
        m_size = int(pcs.shape[0]**0.5)
        PSF_int = np.dot(pcs[:, 0:npc], coeff_int[0:npc]
                         ).reshape(m_size, m_size)

        # PSF_int = PSF_int/np.sum(PSF_int)
        PSF_int_trans = np.flipud(np.fliplr(PSF_int))
        PSF_int_trans = np.fliplr(PSF_int_trans.T)
        # PSF_int_trans = np.abs(PSF_int_trans)
        # ids_szero = PSF_int_trans<0
        # PSF_int_trans[ids_szero] = 0
        # print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
        PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)
441
442
443
        PSF_int_trans = PSF_int_trans-np.min(PSF_int_trans)
        PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)
        # fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf.fits',PSF_int_trans)
Zhang Xin's avatar
pep8    
Zhang Xin committed
444
445
        # DEBGU
        ids_szero = PSF_int_trans < 0
446
        n01 = PSF_int_trans[ids_szero].shape[0]
Fang Yuedong's avatar
Fang Yuedong committed
447

448
449
        n1 = np.sum(np.isinf(PSF_int_trans))
        n2 = np.sum(np.isnan(PSF_int_trans))
Zhang Xin's avatar
pep8    
Zhang Xin committed
450
451
452
        if n1 > 0 or n2 > 0:
            print("DEBUG: PSFInterpSLS, inf:%d, nan:%d, 0 num:%d" %
                  (n1, n2, n01))
453
454
455
456
457
458
        if extrapolate is True:
            # for rep_i in np.arange(0, 2, 1):
                # PSF_int_trans[rep_i,:] = 1e9*pow(10,rep_i)
                # PSF_int_trans[-1-rep_i,:]  = 1e9*pow(10,rep_i)
                # PSF_int_trans[:,rep_i] = 1e9*pow(10,rep_i)
                # PSF_int_trans[:,-1-rep_i] = 1e9*pow(10,rep_i)
459

460
461
462
            PSF_int_trans = psf_extrapolate1(PSF_int_trans, ngg=ngg)
            # fits.writeto('/home/zhangxin/CSST_SIM/CSST_sim_develop/psf_test/psf_large.fits',PSF_int_trans) 
        
463
        ####
Fang Yuedong's avatar
Fang Yuedong committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
        # from astropy.io import fits
        # fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)

        # if g_order in ['C','D','E']:
        #     g_simgma = contam_order_sigma[g_order]/pixel_size_arc
        #     PSF_int_trans = self.convolveWithGauss(PSF_int_trans,g_simgma)
        # n_m_size = int(m_size/2)
        #
        # n_PSF_int = np.zeros([n_m_size, n_m_size])
        #
        # for i in np.arange(n_m_size):
        #     for j in np.arange(n_m_size):
        #         n_PSF_int[i,j] = np.sum(PSF_int[2*i:2*i+2, 2*j:2*j+2])
        #
        # n_PSF_int = n_PSF_int/np.sum(n_PSF_int)

        # chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
        # chip.img.wcs = galsim.wcs.AffineTransform
        if galsimGSObject:

            # imPSFt = np.zeros([257,257])
            # imPSFt[0:256, 0:256] = imPSF
            # # imPSFt[120:130, 0:256] = 1.

            pixel_size_arc = np.rad2deg(self.pixsize * 1e-3 / 28) * 3600
            img = galsim.ImageF(PSF_int_trans, scale=pixel_size_arc)
            gsp = galsim.GSParams(folding_threshold=folding_threshold)
            # TEST: START
            # Use sheared PSF to test the PSF orientation
            # self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
            # TEST: END
            self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
            # if g_order in ['C','D','E']:
            #     add_psf  = galsim.Gaussian(sigma=contam_order_sigma[g_order], flux=1.0)
            #     self.psf = galsim.Convolve(self.psf, add_psf)
            wcs = chip.img.wcs.local(pos_img)
            scale = galsim.PixelScale(0.074)
            self.psf = wcs.toWorld(scale.toImage(
                self.psf), image_pos=(pos_img))

            # return self.PSFspin(x=px/0.01, y=py/0.01)
            return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)

        return PSF_int_trans, PSF_int

Zhang Xin's avatar
Zhang Xin committed
509
    def get_PSF_AND_convolve_withsubImg(self, chip, cutImg=None, pos_img_local=[1000, 1000], bandNo=1, g_order='A', grating_split_pos=3685):
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        """
        Get the PSF at a given image position

        Parameters:
            chip: A 'Chip' object representing the chip we want to extract PSF from.
            pos_img: A 'galsim.Position' object representing the image position.
            bandpass: A 'galsim.Bandpass' object representing the wavelength range.
            pixSize: The pixels size of psf matrix
            findNeighMode: 'treeFind' or 'hoclistFind'
        Returns:
            PSF: A 'galsim.GSObject'.
        """
        order_IDs = {'A': '1', 'B': '0', 'C': '0', 'D': '0', 'E': '0'}
        contam_order_sigma = {'C': 0.28032344707964174,
                              'D': 0.39900182912061344, 'E': 1.1988309797685412}  # arcsec
        x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
        y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
        # print(pos_img.x - x_start)
        # pos_img_x = pos_img_local[0] + x_start
        # pos_img_y = pos_img_local[1] + y_start
        # pos_img = galsim.PositionD(pos_img_x, pos_img_y)
Zhang Xin's avatar
Zhang Xin committed
531
532
        # centerPos_local = cutImg.ncol/2.
        if pos_img_local[0] < grating_split_pos:
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            psf_data = self.grating1_data
        else:
            psf_data = self.grating2_data

        grating_order = order_IDs[g_order]
        # if grating_order in ['-2','-1','2']:
        #     grating_order = '1'

        # if grating_order in ['0', '1']:
        psf_order = psf_data['order'+grating_order]
        psf_order_b = psf_order['band'+str(bandNo)]
        psf_b_dat = psf_order_b['band_data']
        # pos_p = psf_b_dat[1].data
        pos_p = psf_b_dat[1].data/chip.pix_size - np.array([y_start, x_start])

        pc_coeff = psf_b_dat[2].data
        pcs = psf_b_dat[0].data

        npc = 10
        m_size = int(pcs.shape[0]**0.5)
Zhang Xin's avatar
Zhang Xin committed
553
        sumImg = np.sum(cutImg.array)
554
555
        tmp_img = cutImg*0
        for j in np.arange(npc):
Zhang Xin's avatar
pep8    
Zhang Xin committed
556
557
            X_ = np.hstack((pos_p[:, 1].flatten()[:, None], pos_p[:, 0].flatten()[
                           :, None]), dtype=np.float32)
558
559
560
561
            Z_ = (pc_coeff[j].astype(np.float32)).flatten()
            # print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
            cx_len = int(chip.npix_x)
            cy_len = int(chip.npix_y)
Zhang Xin's avatar
pep8    
Zhang Xin committed
562
563
            n_x = np.arange(0, cx_len, 1, dtype=int)
            n_y = np.arange(0, cy_len, 1, dtype=int)
Zhang Xin's avatar
Zhang Xin committed
564
            M, N = np.meshgrid(n_x, n_y)
Zhang Xin's avatar
Zhang Xin committed
565
            # t1=datetime.datetime.now()
566
567
    #         U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
    # method='nearest',fill_value=1.0)
Zhang Xin's avatar
Zhang Xin committed
568
            b_img = galsim.Image(cx_len, cy_len)
Zhang Xin's avatar
pep8    
Zhang Xin committed
569
            b_img.setOrigin(0, 0)
Zhang Xin's avatar
Zhang Xin committed
570
571
            bounds = cutImg.bounds & b_img.bounds
            if bounds.area() == 0:
572
                continue
Zhang Xin's avatar
Zhang Xin committed
573
574

            # ys = cutImg.ymin
Zhang Xin's avatar
pep8    
Zhang Xin committed
575
            # if ys < 0:
Zhang Xin's avatar
Zhang Xin committed
576
577
            #     ys = 0
            # ye = cutImg.ymin+cutImg.nrow
Zhang Xin's avatar
pep8    
Zhang Xin committed
578
            # if ye >= cy_len-1:
Zhang Xin's avatar
Zhang Xin committed
579
580
581
582
            #     ye = cy_len-1
            # if ye - ys <=0:
            #     continue
            # xs = cutImg.xmin
Zhang Xin's avatar
pep8    
Zhang Xin committed
583
            # if xs < 0:
Zhang Xin's avatar
Zhang Xin committed
584
585
            #     xs = 0
            # xe = cutImg.xmin+cutImg.ncol
Zhang Xin's avatar
pep8    
Zhang Xin committed
586
            # if xe >= cx_len-1:
Zhang Xin's avatar
Zhang Xin committed
587
588
589
590
591
592
593
            #     xe = cx_len-1
            # if xe - xs <=0:
            #     continue
            ys = bounds.ymin
            ye = bounds.ymax+1
            xs = bounds.xmin
            xe = bounds.xmax+1
Zhang Xin's avatar
pep8    
Zhang Xin committed
594
595
            U = interpolate.griddata(X_, Z_, (M[ys:ye, xs:xe], N[ys:ye, xs:xe]),
                                     method='nearest', fill_value=1.0)
Zhang Xin's avatar
Zhang Xin committed
596
            # t2=datetime.datetime.now()
Zhang Xin's avatar
pep8    
Zhang Xin committed
597

Zhang Xin's avatar
Zhang Xin committed
598
            # print("time interpolate:", t2-t1)
599

Zhang Xin's avatar
Zhang Xin committed
600
601
602
603
604
            # if U.shape != cutImg.array.shape:
            #     print('DEBUG:SHAPE',cutImg.ncol,cutImg.nrow,cutImg.xmin, cutImg.ymin)
            #     continue
            img_tmp = cutImg
            img_tmp[bounds] = img_tmp[bounds]*U
605
            psf = pcs[:, j].reshape(m_size, m_size)
Zhang Xin's avatar
pep8    
Zhang Xin committed
606
607
            tmp_img = tmp_img + \
                signal.fftconvolve(img_tmp.array, psf, mode='same', axes=None)
608

Zhang Xin's avatar
Zhang Xin committed
609
610
            # t3=datetime.datetime.now()
            # print("time convole:", t3-t2)
611
            del U
Zhang Xin's avatar
Zhang Xin committed
612
            del img_tmp
Zhang Xin's avatar
pep8    
Zhang Xin committed
613
        if np.sum(tmp_img.array) == 0:
Zhang Xin's avatar
Zhang Xin committed
614
615
616
            tmp_img = cutImg
        else:
            tmp_img = tmp_img/np.sum(tmp_img.array)*sumImg
617
618
        return tmp_img

Zhang Xin's avatar
Zhang Xin committed
619
    def convolveFullImgWithPCAPSF(self, chip, folding_threshold=5.e-3):
Zhang Xin's avatar
pep8    
Zhang Xin committed
620
        keys_L1 = chip_utils.getChipSLSGratingID(chip.chipID)
Zhang Xin's avatar
Zhang Xin committed
621
        # keys_L2 = ['order-2','order-1','order0','order1','order2']
Zhang Xin's avatar
pep8    
Zhang Xin committed
622
623
        keys_L2 = ['order0', 'order1']
        keys_L3 = ['w1', 'w2', 'w3', 'w4']
Zhang Xin's avatar
Zhang Xin committed
624
625
626
627
628
629

        npca = 10

        x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
        y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.

Zhang Xin's avatar
pep8    
Zhang Xin committed
630
        for i, gt in enumerate(keys_L1):
Zhang Xin's avatar
Zhang Xin committed
631
632
633
634
635
            psfCo = self.grating1_data
            if i > 0:
                psfCo = self.grating2_data
            for od in keys_L2:
                psfCo_L2 = psfCo['order1']
Zhang Xin's avatar
pep8    
Zhang Xin committed
636
                if od in ['order-2', 'order-1', 'order0', 'order2']:
Zhang Xin's avatar
Zhang Xin committed
637
638
639
640
                    psfCo_L2 = psfCo['order0']
                for w in keys_L3:
                    img = chip.img_stack[gt][od][w]
                    pcs = psfCo_L2['band'+w[1]]['band_data'][0].data
Zhang Xin's avatar
pep8    
Zhang Xin committed
641
642
                    pos_p = psfCo_L2['band'+w[1]]['band_data'][1].data / \
                        chip.pix_size - np.array([y_start, x_start])
Zhang Xin's avatar
Zhang Xin committed
643
644
645
                    pc_coeff = psfCo_L2['band'+w[1]]['band_data'][2].data
                    # print("DEBUG-----------",np.max(pos_p[:,1]),np.min(pos_p[:,1]), np.max(pos_p[:,0]),np.min(pos_p[:,0]))
                    sum_img = np.sum(img.array)
Zhang Xin's avatar
pep8    
Zhang Xin committed
646

Zhang Xin's avatar
Zhang Xin committed
647
648
649
650
651
                    # coeff_mat = np.zeros([npca, chip.npix_y, chip.npix_x])
                    # for m in np.arange(chip.npix_y):
                    #     for n in np.arange(chip.npix_x):
                    #         px = n
                    #         py = m
Zhang Xin's avatar
pep8    
Zhang Xin committed
652

Zhang Xin's avatar
Zhang Xin committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
                    #         dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
                    #         temp_sort_dist = np.zeros([dist2.shape[0], 2])
                    #         temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
                    #         temp_sort_dist[:, 1] = dist2
                    #         # print(temp_sort_dist)
                    #         dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
                    #         # print(dits2_sortlist)
                    #         nearest4p = np.zeros([4, 3])
                    #         pc_coeff_4p = np.zeros([npca, 4])

                    #         for i in np.arange(4):
                    #             smaller_ids = int(dits2_sortlist[i][0])
                    #             nearest4p[i, 0] = pos_p[smaller_ids, 1]
                    #             nearest4p[i, 1] = pos_p[smaller_ids, 0]
                    #             # print(pos_p[smaller_ids, 1],pos_p[smaller_ids, 0])
                    #             nearest4p[i, 2] = dits2_sortlist[i][1]
                    #             pc_coeff_4p[:, i] = pc_coeff[npca, smaller_ids]
                    #         # idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
                    #         #     py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))
                    #         idw_dist = 1/(np.sqrt(nearest4p[:, 2]))

                    #         coeff_int = np.zeros(npca)
                    #         for i in np.arange(4):
                    #             coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
                    #         coeff_mat[:, m, n] = coeff_int

                    m_size = int(pcs.shape[0]**0.5)
Zhang Xin's avatar
pep8    
Zhang Xin committed
680
                    tmp_img = np.zeros_like(img.array, dtype=np.float32)
Zhang Xin's avatar
Zhang Xin committed
681
682
                    for j in np.arange(npca):
                        print(gt, od, w, j)
Zhang Xin's avatar
pep8    
Zhang Xin committed
683
684
                        X_ = np.hstack((pos_p[:, 1].flatten()[:, None], pos_p[:, 0].flatten()[
                                       :, None]), dtype=np.float32)
Zhang Xin's avatar
Zhang Xin committed
685
686
687
688
689
                        Z_ = (pc_coeff[j].astype(np.float32)).flatten()
                        # print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
                        sub_size = 4
                        cx_len = int(chip.npix_x/sub_size)
                        cy_len = int(chip.npix_y/sub_size)
Zhang Xin's avatar
pep8    
Zhang Xin committed
690
691
                        n_x = np.arange(0, chip.npix_x, sub_size, dtype=int)
                        n_y = np.arange(0, chip.npix_y, sub_size, dtype=int)
Zhang Xin's avatar
Zhang Xin committed
692

Zhang Xin's avatar
Zhang Xin committed
693
                        M, N = np.meshgrid(n_x, n_y)
Zhang Xin's avatar
pep8    
Zhang Xin committed
694
                        t1 = datetime.datetime.now()
Zhang Xin's avatar
Zhang Xin committed
695
696
                #         U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
                # method='nearest',fill_value=1.0)
Zhang Xin's avatar
Zhang Xin committed
697
                        U1 = interpolate.griddata(X_, Z_, (M, N),
Zhang Xin's avatar
pep8    
Zhang Xin committed
698
                                                  method='nearest', fill_value=1.0)
Zhang Xin's avatar
Zhang Xin committed
699
                        U = np.zeros_like(chip.img.array, dtype=np.float32)
Zhang Xin's avatar
Zhang Xin committed
700
                        for mi in np.arange(cy_len):
Zhang Xin's avatar
Zhang Xin committed
701
                            for mj in np.arange(cx_len):
Zhang Xin's avatar
pep8    
Zhang Xin committed
702
703
704
705
                                U[mi*sub_size:(mi+1)*sub_size, mj *
                                  sub_size:(mj+1)*sub_size] = U1[mi, mj]
                        t2 = datetime.datetime.now()

Zhang Xin's avatar
Zhang Xin committed
706
707
708
709
                        print("time interpolate:", t2-t1)

                        img_tmp = img.array*U
                        psf = pcs[:, j].reshape(m_size, m_size)
Zhang Xin's avatar
pep8    
Zhang Xin committed
710
711
712
                        tmp_img = tmp_img + \
                            signal.fftconvolve(
                                img_tmp, psf, mode='same', axes=None)
Zhang Xin's avatar
Zhang Xin committed
713

Zhang Xin's avatar
pep8    
Zhang Xin committed
714
                        t3 = datetime.datetime.now()
Zhang Xin's avatar
Zhang Xin committed
715
716
717
                        print("time convole:", t3-t2)
                        del U
                        del U1
Zhang Xin's avatar
pep8    
Zhang Xin committed
718

Zhang Xin's avatar
Zhang Xin committed
719
720
721
722
                    chip.img = chip.img + tmp_img*sum_img/np.sum(tmp_img)
                    del tmp_img
                    gc.collect()

Fang Yuedong's avatar
Fang Yuedong committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        # pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600  #set psf pixsize
        #
        # # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
        # twave = self._findWave(bandpass)
        # if twave == -1:
        #     print("!!!PSF bandpass does not match.")
        #     exit()
        # PSFMat = self.psfMat[twave]
        # cen_col= self.cen_col[twave]
        # cen_row= self.cen_row[twave]
        #
        # px = (pos_img.x - chip.cen_pix_x)*0.01
        # py = (pos_img.y - chip.cen_pix_y)*0.01
        # if findNeighMode == 'treeFind':
        #     imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, PSFCentroidWgt=True)
        # if findNeighMode == 'hoclistFind':
        #     assert(self.hoc != 0), 'hoclist should be built correctly!'
        #     imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
        #
        # ############TEST: START
        # TestGaussian = False
        # if TestGaussian:
        #     gsx  = galsim.Gaussian(sigma=0.04)
        #     #pointing_pa = -23.433333
        #     imPSF= gsx.shear(g1=0.8, g2=0.).rotate(0.*galsim.degrees).drawImage(nx = 256, ny=256, scale=pixSize).array
        # ############TEST: END
        #
        # if galsimGSObject:
        #     imPSFt = np.zeros([257,257])
        #     imPSFt[0:256, 0:256] = imPSF
        #     # imPSFt[120:130, 0:256] = 1.
        #
        #     img = galsim.ImageF(imPSFt, scale=pixSize)
        #     gsp = galsim.GSParams(folding_threshold=folding_threshold)
        #     ############TEST: START
        #     # Use sheared PSF to test the PSF orientation
        #     # self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
        #     ############TEST: END
        #     self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
        #     wcs = chip.img.wcs.local(pos_img)
        #     scale = galsim.PixelScale(0.074)
        #     self.psf = wcs.toWorld(scale.toImage(self.psf), image_pos=(pos_img))
        #
        #     # return self.PSFspin(x=px/0.01, y=py/0.01)
        #     return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
        # return imPSF
    #
    # def PSFspin(self, x, y):
    #     """
    #     The PSF profile at a given image position relative to the axis center
    #
    #     Parameters:
    #     theta : spin angles in a given exposure in unit of [arcsecond]
    #     dx, dy: relative position to the axis center in unit of [pixels]
    #
    #     Return:
    #     Spinned PSF: g1, g2 and axis ratio 'a/b'
    #     """
    #     a2Rad = np.pi/(60.0*60.0*180.0)
    #
    #     ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
    #     rc = np.sqrt(x*x + y*y)
    #     cpix = rc*(self.sigSpin*a2Rad)
    #
    #     beta = (np.arctan2(y,x) + np.pi/2)
    #     ell = cpix**2/(2.0*ff**2+cpix**2)
    #     qr = np.sqrt((1.0+ell)/(1.0-ell))
    #     PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
    #     return self.psf.shear(PSFshear), PSFshear


if __name__ == '__main__':
    configfn = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_new_sim/csst-simulation/config/config_C6_dev.yaml'
    with open(configfn, "r") as stream:
        try:
            config = yaml.safe_load(stream)
            for key, value in config.items():
                print(key + " : " + str(value))
        except yaml.YAMLError as exc:
            print(exc)
    chip = Chip(chipID=1, config=config)
    filter_id, filter_type = chip.getChipFilter()
    filt = Filter(filter_id=filter_id,
                  filter_type=filter_type,
                  filter_param=FilterParam())

    psf_i = PSFInterpSLS(
        chip, filt, PSF_data_prefix="/Volumes/EAGET/CSST_PSF_data/SLS_PSF_PCA_fp/")
    pos_img = galsim.PositionD(x=25155, y=-22060)
    psf_im = psf_i.get_PSF(chip, pos_img=pos_img, g_order='1')