_dispatcher.py 26.3 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
30
31
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
41
42
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
46
47
    "data_model": None,
    "batch_id": "default_batch",
}

BO ZHANG's avatar
BO ZHANG committed
48
49
50
51
52
53
54
55
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
56

BO ZHANG's avatar
BO ZHANG committed
57
58
59
60
61
62
63
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
64
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
78
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
117
118
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
BO ZHANG's avatar
tweak    
BO ZHANG committed
119
    return table.Table([{k: d.get(k, "") for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
120
121


BO ZHANG's avatar
BO ZHANG committed
122
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
123
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
151
152
153
154
155
156
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
157
158
159
160
161
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
162
163
164
        prompt = "plan"
        qr_kwargs = override_common_keys(PLAN_PARAMS, kwargs)
        qr = plan.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
165
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
166
167
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
168
        # plan basis / obsid basis
169
170
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
171
172
                if _["instrument"] == "HSTDM":
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
173
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
174
                    else:
BO ZHANG's avatar
BO ZHANG committed
175
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
176
177
178
                else:
                    this_n_file = 1
                _["n_file"] = this_n_file
179
180
181
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
182
183
184
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
185
        )
BO ZHANG's avatar
BO ZHANG committed
186
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
187
188

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
189
190
191
192
193
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
194
195
196
        prompt = "level0"
        qr_kwargs = override_common_keys(LEVEL0_PARAMS, kwargs)
        qr = level0.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
197
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
198
199
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
200
201
202
203
204
205
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
206

BO ZHANG's avatar
BO ZHANG committed
207
208
209
210
211
212
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
213
214
215
        prompt = "level1"
        qr_kwargs = override_common_keys(LEVEL1_PARAMS, kwargs)
        qr = level1.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
216
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
217
218
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
219
220
221
222
223
224
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
225

226
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
227
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
228
229
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
230
231
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
232
233
234
235
236
237
238
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
239
        assert len(relevant_plan) > 0, relevant_plan
240
241
242
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
243
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
244
245
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
246
247
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
248
249
250
251
252
253
254
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
255
        assert len(relevant_plan) > 0, relevant_plan
256
257
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
258
259
260
261
262
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
263
264
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
265

266
267
268
269
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
270
271
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
272

273
        # sort data_basis before dispatching
274
        data_basis.sort(keys=data_basis.colnames)
275

276
        # loop over data
277
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
278
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
279
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
280
281
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
282
283
284
285
286
287
288
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
289
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
290
291
292
293
294
295
296
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
297
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
298
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
299
            )
300
301
302
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
303
304
305
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
306
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
307
308
309
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
310
311
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
312
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
313
314
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
315
316
                )
            )
BO ZHANG's avatar
BO ZHANG committed
317

BO ZHANG's avatar
BO ZHANG committed
318
        return task_list
BO ZHANG's avatar
BO ZHANG committed
319

BO ZHANG's avatar
BO ZHANG committed
320
321
322
323
324
325
326
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
327

BO ZHANG's avatar
BO ZHANG committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

345
346
347
348
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
349
350
351
352
353
354
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
355
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
356
357
358
359
360
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
361
362
363
364
365
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
366
367
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
368
        )
BO ZHANG's avatar
BO ZHANG committed
369
370
371
372
373

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
374
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
403
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
404
405
406
407
408
409
410
411
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
412

BO ZHANG's avatar
BO ZHANG committed
413
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
414
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
415
416
417
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
418
            n_file_found = len(this_data_detector_files)
419
420
421
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
422
423
424
425
426
427
428
429
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
430
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
431
432
433
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
434
435
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
436
437
438
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
439
                        else list(this_data_detector_files["_id_data"])
440
                    ),
BO ZHANG's avatar
BO ZHANG committed
441
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
442
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

461
462
463
464
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
465
466
467
468
469
470
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
471
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
472
473
474
475
476
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
477
478
479
480
481
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
482
            ]
BO ZHANG's avatar
BO ZHANG committed
483
484
        )

BO ZHANG's avatar
BO ZHANG committed
485
486
487
488
        # initialize task list
        task_list = []

        # loop over plan
489
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
490
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
491
492
493
494
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
495
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
517
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
518
519
520
521
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
522
523
            this_n_file = (
                this_data_obsid_plan["n_file"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
524
            )
BO ZHANG's avatar
BO ZHANG committed
525
526
527
528
529
530
531
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
532
                this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
533
534
535
536
537
538
539
540
541
542
543
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
544

BO ZHANG's avatar
BO ZHANG committed
545
            n_file_expected = int(this_data_obsid_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
546
            n_file_found = len(this_data_obsid_file)
547
548
549
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
550
551
552
553
554
555
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
556
557
558
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
559
560
561
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
562
                        else list(this_data_obsid_file["_id_data"])
563
                    ),
BO ZHANG's avatar
BO ZHANG committed
564
                    n_file_expected=this_data_obsid_plan["n_file"].sum(),
565
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
566
567
568
569
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
570

BO ZHANG's avatar
BO ZHANG committed
571
    @staticmethod
572
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
573
574
        plan_basis: table.Table,
        data_basis: table.Table,
575
        # n_jobs: int = 1,
576
    ) -> list[dict]:
577
578
579
580
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

581
582
583
        # unique obsgroup basis (using group_by)
        obsgroup_basis = plan_basis.group_by(
            keys=[
BO ZHANG's avatar
BO ZHANG committed
584
585
586
587
588
589
590
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        # initialize task list
        task_list = []

        # loop over obsgroup
        for i_obsgroup in trange(len(obsgroup_basis.groups), **TQDM_KWARGS):
            this_obsgroup_basis = obsgroup_basis.groups[i_obsgroup]
            this_obsgroup_obsid = this_obsgroup_basis["obs_id"].data
            n_file_expected = this_obsgroup_basis["n_file"].sum()

            this_instrument = this_obsgroup_basis["instrument"][0]
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
                    dataset=this_obsgroup_basis["dataset"][0],
                    instrument=this_obsgroup_basis["instrument"][0],
                    obs_type=this_obsgroup_basis["obs_type"][0],
                    obs_group=this_obsgroup_basis["obs_group"][0],
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
                            dataset=this_obsgroup_basis["dataset"][0],
                            instrument=this_obsgroup_basis["instrument"][0],
                            obs_type=this_obsgroup_basis["obs_type"][0],
                            obs_group=this_obsgroup_basis["obs_group"][0],
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
                        relevant_plan=this_obsgroup_basis,
                        relevant_data=this_obsgroup_detector_found,
                        n_relevant_plan=len(this_obsgroup_basis),
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
664
665
666
667
668
669
670
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

671
672
673
674
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
675
676
677
678
679
680
681
682
683
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
684

BO ZHANG's avatar
BO ZHANG committed
685
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
686
687
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
688
        # loop over obsgroup
689
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
690
691
692
693
694

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
695
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
696
697
698
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
699
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
700
701
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
702
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
703
704
705
706
707
708
709
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
710
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
711
712
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
713
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
714
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
715
716
717
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
718
719

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
720
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
721
722
723
724
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
725
                )
BO ZHANG's avatar
BO ZHANG committed
726

BO ZHANG's avatar
BO ZHANG committed
727
728
729
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
730
731
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
732
                else:
BO ZHANG's avatar
BO ZHANG committed
733
734
735
736
737
738
739
740
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
741
742
                    )

BO ZHANG's avatar
BO ZHANG committed
743
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
744
            n_file_found = len(this_obsgroup_file)
745
746
747
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
748
749
750
751
752
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
753
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
754
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
755
                    n_relevant_plan=len(this_obsgroup_plan),
756
                    n_relevant_data=len(this_obsgroup_file),
757
758
759
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
760
                        else list(this_obsgroup_file["_id_data"])
761
                    ),
BO ZHANG's avatar
BO ZHANG committed
762
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
763
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
764
765
766
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
767
768

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
769
770
771
772
773
774
775
776
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
777
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
778
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
779
780
781
782
783
784
785
786
787
788
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis