_dispatcher.py 25 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
30
31
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
41
42
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
    "data_model": None,
    "batch_id": "default_batch",
BO ZHANG's avatar
BO ZHANG committed
46
    # "build": None,
BO ZHANG's avatar
BO ZHANG committed
47
    # "pmapname": None,
BO ZHANG's avatar
BO ZHANG committed
48
49
}

BO ZHANG's avatar
BO ZHANG committed
50
51
52
53
54
55
56
57
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
58

BO ZHANG's avatar
BO ZHANG committed
59
60
61
62
63
64
65
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
66
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
67
68
69
70
    "_id",
)

# data basis keys
71
72
LEVEL0_DATA_BASIS_KEYS = (
    "instrument",
BO ZHANG's avatar
BO ZHANG committed
73
    "dataset",
74
75
76
77
78
79
80
81
82
83
84
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
    "prc_status",
    "qc_status",
)

LEVEL1_DATA_BASIS_KEYS = (
BO ZHANG's avatar
BO ZHANG committed
85
    "instrument",
86
    "dataset",
BO ZHANG's avatar
BO ZHANG committed
87
88
89
90
91
92
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
93
    "prc_status",
94
95
96
    "qc_status",
    "data_model",
    "batch_id",
97
98
    "build",
    "pmapname",
BO ZHANG's avatar
BO ZHANG committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
137
138
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
BO ZHANG's avatar
tweak    
BO ZHANG committed
139
    return table.Table([{k: d.get(k, "") for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
140
141


BO ZHANG's avatar
BO ZHANG committed
142
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
143
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
171
172
173
174
175
176
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
177
178
179
180
181
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
182
183
184
        prompt = "plan"
        qr_kwargs = override_common_keys(PLAN_PARAMS, kwargs)
        qr = plan.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
185
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
186
187
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
188
        # plan basis / obsid basis
189
190
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
191
192
                this_instrument = _["instrument"]
                if this_instrument == "HSTDM":
BO ZHANG's avatar
BO ZHANG committed
193
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
194
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
195
                    else:
BO ZHANG's avatar
BO ZHANG committed
196
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
197
                else:
BO ZHANG's avatar
BO ZHANG committed
198
                    # count effective detectors of this instrument
BO ZHANG's avatar
BO ZHANG committed
199
                    this_n_file = len(csst[this_instrument].effective_detector_names)
BO ZHANG's avatar
BO ZHANG committed
200
                _["n_file"] = this_n_file
201
202
203
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
204
205
206
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
207
        )
BO ZHANG's avatar
BO ZHANG committed
208
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
209
210

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
211
212
213
214
215
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
216
217
218
        prompt = "level0"
        qr_kwargs = override_common_keys(LEVEL0_PARAMS, kwargs)
        qr = level0.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
219
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
220
221
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
222
223
224
        # data basis
        data_basis = extract_basis_table(
            qr.data,
225
            LEVEL0_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
226
227
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
228

BO ZHANG's avatar
BO ZHANG committed
229
230
231
232
233
234
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
235
236
237
        prompt = "level1"
        qr_kwargs = override_common_keys(LEVEL1_PARAMS, kwargs)
        qr = level1.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
238
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
239
240
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
241
242
243
        # data basis
        data_basis = extract_basis_table(
            qr.data,
244
            LEVEL1_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
245
246
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
247

248
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
249
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
250
251
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
252
253
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
254
255
256
257
258
259
260
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
261
        assert len(relevant_plan) > 0, relevant_plan
262
263
264
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
265
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
266
267
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
268
269
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
270
271
272
273
274
275
276
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
277
        assert len(relevant_plan) > 0, relevant_plan
278
279
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
280
281
282
283
284
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
285
286
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
287

288
289
290
291
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
292
293
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
294

295
        # sort data_basis before dispatching
BO ZHANG's avatar
BO ZHANG committed
296
        data_basis.sort(keys=["dataset", "obs_id", "detector"])
297

298
        # loop over data
299
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
300
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
301
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
302
303
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
304
305
306
307
308
309
310
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
311
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
312
313
314
315
316
317
318
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
319
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
320
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
321
            )
322
323
324
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
325
326
327
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
328
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
329
330
331
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
332
333
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
334
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
335
336
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
337
338
                )
            )
BO ZHANG's avatar
BO ZHANG committed
339

BO ZHANG's avatar
BO ZHANG committed
340
        return task_list
BO ZHANG's avatar
BO ZHANG committed
341

BO ZHANG's avatar
BO ZHANG committed
342
343
344
345
346
347
348
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
349

BO ZHANG's avatar
BO ZHANG committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

367
368
369
370
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
371
372
373
374
375
376
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
377
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
378
379
380
381
382
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
383
384
385
386
387
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
388
389
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
390
        )
BO ZHANG's avatar
BO ZHANG committed
391
392
393
394
395

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
396
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
425
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
426
427
428
429
430
431
432
433
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
434

BO ZHANG's avatar
BO ZHANG committed
435
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
436
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
437
438
439
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
440
            n_file_found = len(this_data_detector_files)
441
442
443
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
444
445
446
447
448
449
450
451
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
452
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
453
454
455
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
456
457
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
458
459
460
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
461
                        else list(this_data_detector_files["_id_data"])
462
                    ),
BO ZHANG's avatar
BO ZHANG committed
463
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
464
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

483
484
485
486
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

487
488
        group_keys = ["dataset", "instrument", "obs_type", "obs_group", "obs_id"]
        obsid_basis = data_basis.group_by(group_keys)
BO ZHANG's avatar
BO ZHANG committed
489

BO ZHANG's avatar
BO ZHANG committed
490
491
        # initialize task list
        task_list = []
492
493
        # loop over obsid
        for this_obsid_basis in obsid_basis.groups:
494
            # find relevant plan
495
496
497
498
            this_relevant_plan_basis = table.join(
                this_obsid_basis[group_keys][:1],
                plan_basis,
                keys=group_keys,
BO ZHANG's avatar
BO ZHANG committed
499
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
500
            )
501
            assert len(this_relevant_plan_basis) == 1
502
503
            # generate task
            this_task = dict(this_relevant_plan_basis[group_keys][0])
504
505
506
507
508
509
510
511
            n_file_expected = this_relevant_plan_basis[0]["n_file"]
            n_file_found = len(this_obsid_basis)
            this_instrument = this_relevant_plan_basis[0]["instrument"]
            detectors_found = set(this_obsid_basis["detector"])
            detectors_expected = set(csst[this_instrument].effective_detector_names)
            this_success = (
                n_file_expected == n_file_found
                and detectors_found == detectors_expected
BO ZHANG's avatar
BO ZHANG committed
512
            )
513
514
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
515
516
517
            # append this task
            task_list.append(
                dict(
518
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
519
                    success=this_success,
520
521
522
523
                    relevant_plan=this_relevant_plan_basis,
                    relevant_data=this_obsid_basis,
                    n_relevant_plan=len(this_relevant_plan_basis),
                    n_relevant_data=len(this_obsid_basis),
524
525
                    relevant_data_id_list=(
                        []
526
527
                        if len(this_obsid_basis) == 0
                        else list(this_obsid_basis["_id"])
528
                    ),
529
530
                    n_file_expected=n_file_expected,
                    n_file_found=n_file_found,
BO ZHANG's avatar
BO ZHANG committed
531
532
533
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
534

BO ZHANG's avatar
BO ZHANG committed
535
    @staticmethod
536
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
537
538
        plan_basis: table.Table,
        data_basis: table.Table,
539
        # n_jobs: int = 1,
540
    ) -> list[dict]:
541
542
543
544
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

545
        # unique obsgroup basis (using group_by)
546
        obsgroup_plan_basis = plan_basis.group_by(
547
            keys=[
BO ZHANG's avatar
BO ZHANG committed
548
549
550
551
552
553
554
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

555
556
557
558
        # initialize task list
        task_list = []

        # loop over obsgroup
559
560
561
562
        for i_obsgroup_plan in trange(len(obsgroup_plan_basis.groups), **TQDM_KWARGS):
            this_obsgroup_plan_basis = obsgroup_plan_basis.groups[i_obsgroup_plan]
            this_obsgroup_obsid = this_obsgroup_plan_basis["obs_id"].data
            n_file_expected = len(this_obsgroup_obsid)
563

564
            this_instrument = this_obsgroup_plan_basis["instrument"][0]
565
566
567
568
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
569
570
571
572
                    dataset=this_obsgroup_plan_basis["dataset"][0],
                    instrument=this_obsgroup_plan_basis["instrument"][0],
                    obs_type=this_obsgroup_plan_basis["obs_type"][0],
                    obs_group=this_obsgroup_plan_basis["obs_group"][0],
573
574
575
576
577
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
578
579
580
581
                            dataset=this_obsgroup_plan_basis["dataset"][0],
                            instrument=this_obsgroup_plan_basis["instrument"][0],
                            obs_type=this_obsgroup_plan_basis["obs_type"][0],
                            obs_group=this_obsgroup_plan_basis["obs_group"][0],
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
613
                        relevant_plan=this_obsgroup_plan_basis,
614
                        relevant_data=this_obsgroup_detector_found,
615
                        n_relevant_plan=len(this_obsgroup_plan_basis),
616
617
618
619
620
621
622
623
624
625
626
627
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
628
629
630
631
632
633
634
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

635
636
637
638
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
639
640
641
642
643
644
645
646
647
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
648

BO ZHANG's avatar
BO ZHANG committed
649
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
650
651
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
652
        # loop over obsgroup
653
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
654
655
656
657
658

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
659
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
660
661
662
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
663
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
664
665
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
666
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
667
668
669
670
671
672
673
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
674
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
675
676
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
677
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
678
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
679
680
681
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
682
683

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
684
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
685
686
687
688
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
689
                )
BO ZHANG's avatar
BO ZHANG committed
690

BO ZHANG's avatar
BO ZHANG committed
691
692
693
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
694
695
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
696
                else:
BO ZHANG's avatar
BO ZHANG committed
697
698
699
700
701
702
703
704
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
705
706
                    )

BO ZHANG's avatar
BO ZHANG committed
707
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
708
            n_file_found = len(this_obsgroup_file)
709
710
711
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
712
713
714
715
716
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
717
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
718
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
719
                    n_relevant_plan=len(this_obsgroup_plan),
720
                    n_relevant_data=len(this_obsgroup_file),
721
722
723
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
724
                        else list(this_obsgroup_file["_id_data"])
725
                    ),
BO ZHANG's avatar
BO ZHANG committed
726
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
727
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
728
729
730
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
731
732

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
733
734
735
736
737
738
739
740
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
741
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
742
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
743
744
745
746
747
748
749
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
750
            LEVEL0_DATA_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
751
752
        )
        return plan_basis, data_basis