_dispatcher.py 26.6 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
# from csst_dag._csst import csst

11
12
TQDM_KWARGS = dict(unit="task", dynamic_ncols=False)

BO ZHANG's avatar
BO ZHANG committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
30
31
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
32
33
34
35
36
37
38
39
40
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
41
42
    "prc_status": None,
    "qc_status": None,
BO ZHANG's avatar
BO ZHANG committed
43
    # special keys for data products
BO ZHANG's avatar
BO ZHANG committed
44
45
    "data_model": None,
    "batch_id": "default_batch",
BO ZHANG's avatar
BO ZHANG committed
46
47
    "build": None,
    "pmapname": None,
BO ZHANG's avatar
BO ZHANG committed
48
49
}

BO ZHANG's avatar
BO ZHANG committed
50
51
52
53
54
55
56
57
# PROC_PARAMS = {
#     "priority": 1,
#     "batch_id": "default_batch",
#     "pmapname": "pmapname",
#     "final_prc_status": -2,
#     "demo": False,
#     # should be capable to extend
# }
BO ZHANG's avatar
BO ZHANG committed
58

BO ZHANG's avatar
BO ZHANG committed
59
60
61
62
63
64
65
# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
BO ZHANG's avatar
BO ZHANG committed
66
    "n_file",
BO ZHANG's avatar
BO ZHANG committed
67
68
69
70
71
72
73
74
75
76
77
78
79
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
BO ZHANG's avatar
BO ZHANG committed
80
    "prc_status",
BO ZHANG's avatar
BO ZHANG committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
)

# join_type for data x plan
PLAN_JOIN_TYPE = "inner"
"""
References:
    - https://docs.astropy.org/en/stable/api/astropy.table.join.html
    - https://docs.astropy.org/en/stable/table/operations.html#join

Typical types:
    - inner join: Only matching rows from both tables
    - left join: All rows from left table, matching rows from right table
    - right join: All rows from right table, matching rows from left table
    - outer join: All rows from both tables
    - cartesian join: Every combination of rows from both tables
"""

BO ZHANG's avatar
BO ZHANG committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
119
120
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
BO ZHANG's avatar
tweak    
BO ZHANG committed
121
    return table.Table([{k: d.get(k, "") for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
122
123


BO ZHANG's avatar
BO ZHANG committed
124
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
125
    """Split data basis into n_split parts via obs_id"""
BO ZHANG's avatar
BO ZHANG committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


BO ZHANG's avatar
BO ZHANG committed
153
154
155
156
157
158
class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
159
160
161
162
163
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
164
165
166
        prompt = "plan"
        qr_kwargs = override_common_keys(PLAN_PARAMS, kwargs)
        qr = plan.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
167
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
168
169
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
170
        # plan basis / obsid basis
171
172
        try:
            for _ in qr.data:
BO ZHANG's avatar
BO ZHANG committed
173
174
                this_instrument = _["instrument"]
                if this_instrument == "HSTDM":
BO ZHANG's avatar
BO ZHANG committed
175
                    if _["params"]["detector"] == "SIS12":
BO ZHANG's avatar
BO ZHANG committed
176
                        this_n_file = len(_["params"]["exposure_start"]) * 2
BO ZHANG's avatar
BO ZHANG committed
177
                    else:
BO ZHANG's avatar
BO ZHANG committed
178
                        this_n_file = len(_["params"]["exposure_start"])
BO ZHANG's avatar
BO ZHANG committed
179
                else:
BO ZHANG's avatar
BO ZHANG committed
180
                    # count effective detectors of this instrument
BO ZHANG's avatar
BO ZHANG committed
181
                    this_n_file = len(csst[this_instrument].effective_detector_names)
BO ZHANG's avatar
BO ZHANG committed
182
                _["n_file"] = this_n_file
183
184
185
        except KeyError:
            print(f"`n_epec_frame` is not found in {_}")
            raise KeyError(f"`n_epec_frame` is not found in {_}")
BO ZHANG's avatar
BO ZHANG committed
186
187
188
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
189
        )
BO ZHANG's avatar
BO ZHANG committed
190
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
191
192

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
193
194
195
196
197
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
198
199
200
        prompt = "level0"
        qr_kwargs = override_common_keys(LEVEL0_PARAMS, kwargs)
        qr = level0.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
201
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
202
203
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
204
205
206
207
208
209
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
210

BO ZHANG's avatar
BO ZHANG committed
211
212
213
214
215
216
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
BO ZHANG's avatar
BO ZHANG committed
217
218
219
        prompt = "level1"
        qr_kwargs = override_common_keys(LEVEL1_PARAMS, kwargs)
        qr = level1.find(**qr_kwargs)
BO ZHANG's avatar
BO ZHANG committed
220
        assert qr.success, qr
BO ZHANG's avatar
BO ZHANG committed
221
222
        print(f">>> [{prompt}] query kwargs: {qr_kwargs}")
        print(f">>> [{prompt}] {len(qr.data)} records found.")
BO ZHANG's avatar
BO ZHANG committed
223
224
225
226
227
228
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
229

230
    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
231
    def find_plan_level0_basis(**kwargs) -> tuple[table.Table, table.Table]:
232
233
        data_basis = Dispatcher.find_level0_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
234
235
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
236
237
238
239
240
241
242
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
243
        assert len(relevant_plan) > 0, relevant_plan
244
245
246
        return relevant_plan, data_basis

    @staticmethod
BO ZHANG's avatar
tweaks    
BO ZHANG committed
247
    def find_plan_level1_basis(**kwargs) -> tuple[table.Table, table.Table]:
248
249
        data_basis = Dispatcher.find_level1_basis(**kwargs)
        plan_basis = Dispatcher.find_plan_basis(**kwargs)
250
251
        assert len(data_basis) > 0, data_basis
        assert len(plan_basis) > 0, plan_basis
252
253
254
255
256
257
258
        u_data_basis = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_data_basis,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type=PLAN_JOIN_TYPE,
        )
259
        assert len(relevant_plan) > 0, relevant_plan
260
261
        return relevant_plan, data_basis

BO ZHANG's avatar
BO ZHANG committed
262
263
264
265
266
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
BO ZHANG's avatar
BO ZHANG committed
267
268
        # unique obsid --> useless
        # u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
269

270
271
272
273
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
274
275
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
276

277
        # sort data_basis before dispatching
278
        data_basis.sort(keys=data_basis.colnames)
279

280
        # loop over data
281
        for i_data_basis in trange(len(data_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
282
            # i_data_basis = 1
BO ZHANG's avatar
BO ZHANG committed
283
            this_task = dict(data_basis[i_data_basis])
BO ZHANG's avatar
BO ZHANG committed
284
285
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
286
287
288
289
290
291
292
                this_data_basis[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
293
                plan_basis,
BO ZHANG's avatar
BO ZHANG committed
294
295
296
297
298
299
300
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
301
                join_type="inner",
BO ZHANG's avatar
BO ZHANG committed
302
                table_names=["data", "plan"],
BO ZHANG's avatar
BO ZHANG committed
303
            )
304
305
306
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = 1
            this_task["n_file_found"] = 1
BO ZHANG's avatar
BO ZHANG committed
307
308
309
            # append this task
            task_list.append(
                dict(
BO ZHANG's avatar
BO ZHANG committed
310
                    task=this_task,
BO ZHANG's avatar
BO ZHANG committed
311
312
313
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
BO ZHANG's avatar
BO ZHANG committed
314
315
                    n_relevant_plan=len(this_relevant_plan),
                    n_relevant_data=1,
316
                    relevant_data_id_list=[data_basis[i_data_basis]["_id"]],
317
318
                    n_file_expected=1,
                    n_file_found=1,
BO ZHANG's avatar
BO ZHANG committed
319
320
                )
            )
BO ZHANG's avatar
BO ZHANG committed
321

BO ZHANG's avatar
BO ZHANG committed
322
        return task_list
BO ZHANG's avatar
BO ZHANG committed
323

BO ZHANG's avatar
BO ZHANG committed
324
325
326
327
328
329
330
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
331

BO ZHANG's avatar
BO ZHANG committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

349
350
351
352
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
353
354
355
356
357
358
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
359
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
360
361
362
363
364
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
365
366
367
368
369
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
370
371
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
372
        )
BO ZHANG's avatar
BO ZHANG committed
373
374
375
376
377

        # initialize task list
        task_list = []

        # loop over plan
BO ZHANG's avatar
tweaks    
BO ZHANG committed
378
        for i_data_detector in trange(len(u_data_detector), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
407
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
408
409
410
411
412
413
414
415
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
BO ZHANG's avatar
BO ZHANG committed
416

BO ZHANG's avatar
BO ZHANG committed
417
            n_file_expected = (
BO ZHANG's avatar
BO ZHANG committed
418
                this_data_detector_plan["n_file"][0]
BO ZHANG's avatar
BO ZHANG committed
419
420
421
                if len(this_data_detector_plan) > 0
                else 0
            )
BO ZHANG's avatar
BO ZHANG committed
422
            n_file_found = len(this_data_detector_files)
423
424
425
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
426
427
428
429
430
431
432
433
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
BO ZHANG's avatar
BO ZHANG committed
434
                        and n_file_found == n_file_expected
BO ZHANG's avatar
BO ZHANG committed
435
436
437
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
BO ZHANG's avatar
BO ZHANG committed
438
439
                    n_relevant_plan=len(this_data_detector_plan),
                    n_relevant_data=len(this_data_detector_files),
440
441
442
                    relevant_data_id_list=(
                        []
                        if len(this_data_detector_files) == 0
443
                        else list(this_data_detector_files["_id_data"])
444
                    ),
BO ZHANG's avatar
BO ZHANG committed
445
                    n_file_expected=this_data_detector_plan["n_file"].sum(),
446
                    n_file_found=len(this_data_detector_files),
BO ZHANG's avatar
BO ZHANG committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

465
466
467
468
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
469
470
        obsid_basis = data_basis.group_by([""])

BO ZHANG's avatar
BO ZHANG committed
471
472
473
474
475
476
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
BO ZHANG's avatar
BO ZHANG committed
477
            join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
478
479
480
481
482
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
483
484
485
486
487
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
488
            ]
BO ZHANG's avatar
BO ZHANG committed
489
490
        )

BO ZHANG's avatar
BO ZHANG committed
491
492
493
494
        # initialize task list
        task_list = []

        # loop over plan
495
        for i_data_obsid in trange(len(u_data_obsid), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
496
            # i_data_obsid = 2
BO ZHANG's avatar
BO ZHANG committed
497
498
499
500
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
BO ZHANG's avatar
BO ZHANG committed
501
            this_data_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
502
503
504
505
506
507
508
509
510
511
512
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
BO ZHANG's avatar
BO ZHANG committed
513
            # print(this_data_obsid_file.colnames)
BO ZHANG's avatar
BO ZHANG committed
514
515
516
517
518
519
520
521
522
523
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
BO ZHANG's avatar
BO ZHANG committed
524
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
525
526
527
528
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
BO ZHANG's avatar
BO ZHANG committed
529
530
            this_n_file = (
                this_data_obsid_plan["n_file"] if len(this_data_obsid_plan) > 0 else 0
BO ZHANG's avatar
BO ZHANG committed
531
            )
BO ZHANG's avatar
BO ZHANG committed
532
533
534
535
536
537
538
            this_effective_detector_names = csst[
                this_instrument
            ].effective_detector_names

            if this_instrument == "HSTDM":
                # 不确定以后是1个探测器还是2个探测器
                this_n_file_found = len(this_data_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
539
                this_n_file_expected = (this_n_file, this_n_file * 2)
BO ZHANG's avatar
BO ZHANG committed
540
541
542
543
544
545
546
547
548
549
550
                this_success = this_n_file_found in this_n_file_expected
            else:
                # for other instruments, e.g., MSC
                # n_file_found = len(this_obsgroup_obsid_file)
                # n_file_expected = len(effective_detector_names)
                # this_success &= n_file_found == n_file_expected

                # or more strictly, expected files are a subset of files found
                this_success = set(this_effective_detector_names) <= set(
                    this_data_obsid_file["detector"]
                )
BO ZHANG's avatar
BO ZHANG committed
551

BO ZHANG's avatar
BO ZHANG committed
552
            n_file_expected = int(this_data_obsid_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
553
            n_file_found = len(this_data_obsid_file)
554
555
556
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
557
558
559
560
561
562
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
BO ZHANG's avatar
BO ZHANG committed
563
564
565
                    relevant_data=this_data_obsid_file,
                    n_relevant_plan=len(this_data_obsid_plan),
                    n_relevant_data=len(this_data_obsid_file),
566
567
568
                    relevant_data_id_list=(
                        []
                        if len(this_data_obsid_file) == 0
BO ZHANG's avatar
BO ZHANG committed
569
                        else list(this_data_obsid_file["_id"])
570
                    ),
BO ZHANG's avatar
BO ZHANG committed
571
                    n_file_expected=this_data_obsid_plan["n_file"].sum(),
572
                    n_file_found=len(this_data_obsid_file),
BO ZHANG's avatar
BO ZHANG committed
573
574
575
576
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
577

BO ZHANG's avatar
BO ZHANG committed
578
    @staticmethod
579
    def dispatch_obsgroup_detector(
BO ZHANG's avatar
BO ZHANG committed
580
581
        plan_basis: table.Table,
        data_basis: table.Table,
582
        # n_jobs: int = 1,
583
    ) -> list[dict]:
584
585
586
587
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

588
589
590
        # unique obsgroup basis (using group_by)
        obsgroup_basis = plan_basis.group_by(
            keys=[
BO ZHANG's avatar
BO ZHANG committed
591
592
593
594
595
596
597
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        # initialize task list
        task_list = []

        # loop over obsgroup
        for i_obsgroup in trange(len(obsgroup_basis.groups), **TQDM_KWARGS):
            this_obsgroup_basis = obsgroup_basis.groups[i_obsgroup]
            this_obsgroup_obsid = this_obsgroup_basis["obs_id"].data
            n_file_expected = this_obsgroup_basis["n_file"].sum()

            this_instrument = this_obsgroup_basis["instrument"][0]
            effective_detector_names = csst[this_instrument].effective_detector_names

            for this_effective_detector_name in effective_detector_names:
                this_task = dict(
                    dataset=this_obsgroup_basis["dataset"][0],
                    instrument=this_obsgroup_basis["instrument"][0],
                    obs_type=this_obsgroup_basis["obs_type"][0],
                    obs_group=this_obsgroup_basis["obs_group"][0],
                    detector=this_effective_detector_name,
                )
                this_obsgroup_detector_expected = table.Table(
                    [
                        dict(
                            dataset=this_obsgroup_basis["dataset"][0],
                            instrument=this_obsgroup_basis["instrument"][0],
                            obs_type=this_obsgroup_basis["obs_type"][0],
                            obs_group=this_obsgroup_basis["obs_group"][0],
                            obs_id=this_obsid,
                            detector=this_effective_detector_name,
                        )
                        for this_obsid in this_obsgroup_obsid
                    ]
                )
                this_obsgroup_detector_found = table.join(
                    this_obsgroup_detector_expected,
                    data_basis,
                    keys=[
                        "dataset",
                        "instrument",
                        "obs_type",
                        "obs_group",
                        "obs_id",
                        "detector",
                    ],
                    join_type="inner",
                )
                n_file_found = len(this_obsgroup_detector_found)
                this_success = n_file_found == n_file_expected and set(
                    this_obsgroup_detector_found["obs_id"]
                ) == set(this_obsgroup_obsid)
                # set n_file_expected and n_file_found
                this_task["n_file_expected"] = n_file_expected
                this_task["n_file_found"] = n_file_found
                # append this task
                task_list.append(
                    dict(
                        task=this_task,
                        success=this_success,
                        relevant_plan=this_obsgroup_basis,
                        relevant_data=this_obsgroup_detector_found,
                        n_relevant_plan=len(this_obsgroup_basis),
                        n_relevant_data=len(this_obsgroup_detector_found),
                        relevant_data_id_list=(
                            list(this_obsgroup_detector_found["_id"])
                            if n_file_found > 0
                            else []
                        ),
                        n_file_expected=n_file_expected,
                        n_file_found=n_file_found,
                    )
                )
        return task_list

BO ZHANG's avatar
BO ZHANG committed
671
672
673
674
675
676
677
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

678
679
680
681
        # return an empty list if input is empty
        if len(plan_basis) == 0 or len(data_basis) == 0:
            return []

BO ZHANG's avatar
BO ZHANG committed
682
683
684
685
686
687
688
689
690
        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
691

BO ZHANG's avatar
BO ZHANG committed
692
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
693
694
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
695
        # loop over obsgroup
696
        for i_obsgroup in trange(len(obsgroup_basis), **TQDM_KWARGS):
BO ZHANG's avatar
BO ZHANG committed
697
698
699
700
701

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

BO ZHANG's avatar
BO ZHANG committed
702
            this_obsgroup_plan = table.join(
BO ZHANG's avatar
BO ZHANG committed
703
704
705
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
BO ZHANG's avatar
BO ZHANG committed
706
                join_type=PLAN_JOIN_TYPE,
BO ZHANG's avatar
BO ZHANG committed
707
708
            )
            this_obsgroup_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
709
                this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
710
711
712
713
714
715
716
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
BO ZHANG's avatar
BO ZHANG committed
717
            for i_obsid in range(len(this_obsgroup_plan)):
BO ZHANG's avatar
BO ZHANG committed
718
719
                # i_obsid = 1
                # print(i_obsid)
BO ZHANG's avatar
BO ZHANG committed
720
                this_instrument = this_obsgroup_plan[i_obsid]["instrument"]
BO ZHANG's avatar
BO ZHANG committed
721
                this_n_file = this_obsgroup_plan[i_obsid]["n_file"]
BO ZHANG's avatar
BO ZHANG committed
722
723
724
                this_effective_detector_names = csst[
                    this_instrument
                ].effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
725
726

                this_obsgroup_obsid_file = table.join(
BO ZHANG's avatar
BO ZHANG committed
727
                    this_obsgroup_plan[i_obsid : i_obsid + 1],  # this obsid
BO ZHANG's avatar
BO ZHANG committed
728
729
730
731
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
732
                )
BO ZHANG's avatar
BO ZHANG committed
733

BO ZHANG's avatar
BO ZHANG committed
734
735
736
                if this_instrument == "HSTDM":
                    # 不确定以后是1个探测器还是2个探测器
                    this_n_file_found = len(this_obsgroup_obsid_file)
BO ZHANG's avatar
BO ZHANG committed
737
738
                    this_n_file_expected = this_n_file
                    this_success &= this_n_file_found == this_n_file_expected
BO ZHANG's avatar
BO ZHANG committed
739
                else:
BO ZHANG's avatar
BO ZHANG committed
740
741
742
743
744
745
746
747
                    # for other instruments, e.g., MSC
                    # n_file_found = len(this_obsgroup_obsid_file)
                    # n_file_expected = len(effective_detector_names)
                    # this_success &= n_file_found == n_file_expected

                    # or more strictly, expected files are a subset of files found
                    this_success &= set(this_effective_detector_names) <= set(
                        this_obsgroup_obsid_file["detector"]
BO ZHANG's avatar
BO ZHANG committed
748
749
                    )

BO ZHANG's avatar
BO ZHANG committed
750
            n_file_expected = int(this_obsgroup_plan["n_file"].sum())
BO ZHANG's avatar
BO ZHANG committed
751
            n_file_found = len(this_obsgroup_file)
752
753
754
            # set n_file_expected and n_file_found
            this_task["n_file_expected"] = n_file_expected
            this_task["n_file_found"] = n_file_found
BO ZHANG's avatar
BO ZHANG committed
755
756
757
758
759
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
BO ZHANG's avatar
BO ZHANG committed
760
                    relevant_plan=this_obsgroup_plan,
BO ZHANG's avatar
BO ZHANG committed
761
                    relevant_data=this_obsgroup_file,
BO ZHANG's avatar
BO ZHANG committed
762
                    n_relevant_plan=len(this_obsgroup_plan),
763
                    n_relevant_data=len(this_obsgroup_file),
764
765
766
                    relevant_data_id_list=(
                        []
                        if len(this_obsgroup_file) == 0
767
                        else list(this_obsgroup_file["_id_data"])
768
                    ),
BO ZHANG's avatar
BO ZHANG committed
769
                    n_file_expected=this_obsgroup_plan["n_file"].sum(),
770
                    n_file_found=len(this_obsgroup_file),
BO ZHANG's avatar
BO ZHANG committed
771
772
773
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
774
775

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
776
777
778
779
780
781
782
783
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
BO ZHANG's avatar
BO ZHANG committed
784
            _["n_file"] = (
BO ZHANG's avatar
BO ZHANG committed
785
                _["params"]["num_epec_frame"] if _["instrument"] == "HSTDM" else 1
BO ZHANG's avatar
BO ZHANG committed
786
787
788
789
790
791
792
793
794
795
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis